Question Number 42798 by maxmathsup by imad last updated on 02/Sep/18
$${find}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$
Commented by maxmathsup by imad last updated on 05/Sep/18
$${changement}\:{x}={sint}\:{give}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{{n}} {t}\:{cos}^{\mathrm{2}} {t}\:{dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{sin}^{{n}} {t}\left(\mathrm{1}−{sin}^{\mathrm{2}} {t}\right){dt}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {t}\:{dt}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{sin}^{{n}+\mathrm{2}} {dt}\:={w}_{{n}} −{w}_{{n}+\mathrm{2}} \\ $$$${let}\:{find}\:{w}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{{n}} {t}\:{dt}\:\:{we}\:{have}\:{w}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{{n}−\mathrm{2}} {t}\left(\mathrm{1}−{cos}^{\mathrm{2}} {t}\right){dt} \\ $$$$={w}_{{n}−\mathrm{2}} \:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cost}\left(\:{cost}\:{sin}^{{n}−\mathrm{2}} {t}\right){dt}\:\:{by}\:{parts}\:{u}={cost}\:{and}\:{v}^{'} ={cost}\:{sin}^{{n}−\mathrm{2}} {t}\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cost}\:\left({cost}\:{sin}^{{n}−\mathrm{2}} {t}\right){dt}\:=\left[\frac{\mathrm{1}}{{n}−\mathrm{1}}\:{cost}\:{sin}^{{n}−\mathrm{1}} {t}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{−{sint}}{{n}−\mathrm{1}}\:{sin}^{{n}−\mathrm{1}} {tdt} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}^{{n}} {t}}{{n}−\mathrm{1}}\:{dt}\:=\frac{\mathrm{1}}{{n}−\mathrm{1}}\:{w}_{{n}} \:\Rightarrow{w}_{{n}} ={w}_{{n}−\mathrm{2}} −\frac{\mathrm{1}}{{n}−\mathrm{1}}\:{w}_{{n}} \:\Rightarrow\left(\mathrm{1}+\frac{\mathrm{1}}{{n}−\mathrm{1}}\right){w}_{{n}} ={w}_{{n}−\mathrm{2}} \:\Rightarrow \\ $$$$\frac{{n}}{{n}−\mathrm{1}}{w}_{{n}} \:={w}_{{n}−\mathrm{2}} \:\Rightarrow{w}_{{n}} =\frac{{n}−\mathrm{1}}{{n}}{w}_{{n}−\mathrm{2}} \Rightarrow{w}_{\mathrm{2}{n}} =\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}}{w}_{\mathrm{2}{n}−\mathrm{2}} \:{and} \\ $$$${w}_{\mathrm{2}{n}+\mathrm{1}} \:=\frac{\mathrm{2}{n}}{\mathrm{2}{n}+\mathrm{1}}\:{w}_{\mathrm{2}{n}−\mathrm{1}} \:\:{let}\:{find}\:{w}_{\mathrm{2}{n}} \\ $$$$\prod_{{k}=\mathrm{1}} ^{{n}} \:{w}_{\mathrm{2}{k}} \:=\prod_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{2}{k}−\mathrm{1}}{\mathrm{2}{k}}\:{w}_{\mathrm{2}{k}−\mathrm{2}} \:\Rightarrow{w}_{\mathrm{2}} .{w}_{\mathrm{4}} …..{w}_{\mathrm{2}{n}} =\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}…..\left(\mathrm{2}{n}−\mathrm{1}\right)}{\left(\mathrm{2}\right)\left(\mathrm{4}\right)….\left(\mathrm{2}{n}\right)}{w}_{\mathrm{0}} {w}_{\mathrm{2}} …{w}_{\mathrm{2}{n}−\mathrm{2}} \Rightarrow \\ $$$${w}_{\mathrm{2}{n}} =\:\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}…\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}^{{n}} \left({n}!\right)}\:{w}_{\mathrm{0}} =\:\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }\:\frac{\pi}{\mathrm{2}}\:\:\:{let}\:{find}\:{w}_{\mathrm{2}{n}+\mathrm{1}} \\ $$$${I}_{\mathrm{2}{n}} ={w}_{\mathrm{2}{n}} −{w}_{\mathrm{2}{n}+\mathrm{2}} =\:\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }\:\frac{\pi}{\mathrm{2}}\:−\:\frac{\left(\mathrm{2}{n}+\mathrm{4}\right)!}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{4}} \:\left\{\left({n}+\mathrm{2}\right)!\right\}^{\mathrm{2}} }\:\frac{\pi}{\mathrm{2}}\:\:{let}\:{find}\:{w}_{\mathrm{2}{n}+\mathrm{1}} \\ $$$${we}\:{have}\:{w}_{\mathrm{2}{n}+\mathrm{1}} =\frac{\mathrm{2}{n}}{\mathrm{2}{n}+\mathrm{1}}\:{w}_{\mathrm{2}{n}−\mathrm{1}} \:\Rightarrow\prod_{{k}=\mathrm{1}} ^{{n}} \:{w}_{\mathrm{2}{k}+\mathrm{1}} \:=\prod_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{2}{k}}{\mathrm{2}{k}+\mathrm{1}}\:\prod_{{k}=\mathrm{1}} ^{{n}} {w}_{\mathrm{2}{k}−\mathrm{1}} \:\Rightarrow \\ $$$${w}_{\mathrm{3}} .{w}_{\mathrm{5}} …..{w}_{\mathrm{2}{n}+\mathrm{1}} =\frac{\mathrm{2}^{{n}} \left({n}!\right)}{\mathrm{3}.\mathrm{5}….\left(\mathrm{2}{n}+\mathrm{1}\right)}\:{w}_{\mathrm{1}} .{w}_{\mathrm{3}} ….{w}_{\mathrm{2}{n}−\mathrm{1}} \Rightarrow \\ $$$${w}_{\mathrm{2}{n}+\mathrm{1}} =\:\frac{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:{w}_{\mathrm{1}} \:\:\:{but}\:{w}_{\mathrm{1}} =\mathrm{1}\:\Rightarrow\:{I}_{\mathrm{2}{n}−\mathrm{1}} ={w}_{\mathrm{2}{n}−\mathrm{1}} \:−{w}_{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{2}^{\mathrm{2}{n}−\mathrm{2}} \left\{\left({n}−\mathrm{1}\right)!\right\}^{\mathrm{2}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)!}\:−\frac{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:. \\ $$
Commented by maxmathsup by imad last updated on 05/Sep/18
$${another}\:{way}\:{changement}\:\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }={t}\:{give}\:{x}^{\mathrm{2}} \:=\mathrm{1}−{t}^{\mathrm{2}} \:\Rightarrow{dx}\:=−{dt}\:\Rightarrow \\ $$$${I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} \:\:{dt}\:\:\Rightarrow\:{I}_{\mathrm{2}{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} \:{t}^{\mathrm{2}{k}} {dt} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\:\:\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:{C}_{{n}} ^{{k}} \\ $$$${I}_{\mathrm{2}{n}+\mathrm{1}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} {dt}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} \sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} \:{t}^{\mathrm{2}{k}} \right){dt} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{k}} \sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{dt}\:\:{then}\:{we}\:{calculate}\:{w}_{{k}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{k}} \sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$${by}\:{recurrence}…. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18
$${x}={sin}\alpha\:\:{dx}={cos}\alpha\:{d}\alpha \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {sin}^{{n}} \alpha\:{cos}^{\mathrm{2}} \alpha\:{d}\alpha \\ $$$${using}\:{gamma}\:{beta}\:{function} \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} \alpha{cos}^{\mathrm{2}{q}−\mathrm{1}} \propto\:{d}\alpha \\ $$$$=\frac{\lceil{p}\:\lceil{q}}{\mathrm{2}\lceil\left({p}+{q}\right)} \\ $$$$\mathrm{2}{p}−\mathrm{1}={n}\:\:{p}=\frac{{n}+\mathrm{1}}{\mathrm{2}}\:\:\:\mathrm{2}{q}−\mathrm{1}=\mathrm{2}\:\:\:{q}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} {sin}^{\mathrm{2}×\frac{{n}+\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \alpha×{cos}^{\mathrm{2}×\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} \alpha\:{d}\alpha \\ $$$$=\frac{\lceil\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)×\lceil\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{2}\lceil\left(\frac{{n}+\mathrm{4}}{\mathrm{2}}\right)} \\ $$$${pls}\:{check} \\ $$