Menu Close

find-I-n-0-pi-2-1-cos-nx-sin-2-nx-dx-




Question Number 60685 by maxmathsup by imad last updated on 24/May/19
find I_n =∫_0 ^(π/2)  ((1−cos(nx))/(sin^2 (nx)))dx
findIn=0π21cos(nx)sin2(nx)dx
Commented by maxmathsup by imad last updated on 25/May/19
we have I_n = ∫_0 ^(π/2)  ((2sin^2 (((nx)/2)))/(4 sin^2 (((nx)/2))cos^2 (((nx)/2)))) dx =(1/2) ∫_0 ^(π/2)     (dx/(cos^2 (((nx)/2))))  =_(((nx)/2)=t)       (1/2) ∫_0 ^((nπ)/4)       (1/(cos^2 t)) (2/n) dt = (1/n) ∫_0 ^((nπ)/4)   (dt/((1+cos(2t))/2)) =(2/n) ∫_0 ^((nπ)/4)    (dt/(1+cos(2t)))  =_(tan(t) =u)        (2/n) ∫_0 ^(tan(((nπ)/4)))      (du/((1+u^2 )(1+((1−u^2 )/(1+u^2 ))))) =(2/n) ∫_0 ^(tan(((nπ)/4)))    (du/(1+u^2  +1−u^2 ))  =(1/n) ∫_0 ^(tan(((nπ)/4)))  du =(1/n)tan(((nπ)/4))  ★ I_n =(1/n) tan(n(π/4))  ★    with n>0 .
wehaveIn=0π22sin2(nx2)4sin2(nx2)cos2(nx2)dx=120π2dxcos2(nx2)=nx2=t120nπ41cos2t2ndt=1n0nπ4dt1+cos(2t)2=2n0nπ4dt1+cos(2t)=tan(t)=u2n0tan(nπ4)du(1+u2)(1+1u21+u2)=2n0tan(nπ4)du1+u2+1u2=1n0tan(nπ4)du=1ntan(nπ4)In=1ntan(nπ4)withn>0.
Answered by tanmay last updated on 24/May/19
∫_0 ^(π/2) ((2sin^2 ((nx)/2))/((2sin((nx)/2)cos((nx)/2))^2 ))dx  (1/2)∫_0 ^(π/2) sec^2 ((nx)/2)dx  (1/2)×∣tan((nx)/2)∣_0 ^(π/2) ×(2/n)  (1/n)×tan((nπ)/4)
0π22sin2nx2(2sinnx2cosnx2)2dx120π2sec2nx2dx12×tannx20π2×2n1n×tannπ4

Leave a Reply

Your email address will not be published. Required fields are marked *