find-I-n-0-pi-2-1-cos-nx-sin-2-nx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60685 by maxmathsup by imad last updated on 24/May/19 findIn=∫0π21−cos(nx)sin2(nx)dx Commented by maxmathsup by imad last updated on 25/May/19 wehaveIn=∫0π22sin2(nx2)4sin2(nx2)cos2(nx2)dx=12∫0π2dxcos2(nx2)=nx2=t12∫0nπ41cos2t2ndt=1n∫0nπ4dt1+cos(2t)2=2n∫0nπ4dt1+cos(2t)=tan(t)=u2n∫0tan(nπ4)du(1+u2)(1+1−u21+u2)=2n∫0tan(nπ4)du1+u2+1−u2=1n∫0tan(nπ4)du=1ntan(nπ4)★In=1ntan(nπ4)★withn>0. Answered by tanmay last updated on 24/May/19 ∫0π22sin2nx2(2sinnx2cosnx2)2dx12∫0π2sec2nx2dx12×∣tannx2∣0π2×2n1n×tannπ4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-191758Next Next post: dy-dx-x-2-y-x-3-y-3-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.