Menu Close

find-I-n-m-0-1-x-n-1-x-m-dx-with-n-m-N-2-and-calculate-n-0-I-n-m-




Question Number 27999 by abdo imad last updated on 18/Jan/18
find  I_(n,m)  = ∫_0 ^1  x^n  (1−x)^m  dx with  (n,m)∈N^★^2   and calculate  Σ_(n=0) ^∝  I_(n,m) .
findIn,m=01xn(1x)mdxwith(n,m)N2andcalculaten=0In,m.
Commented by abdo imad last updated on 22/Jan/18
due to uniform convergence we have  Σ_(n=0) ^(+∞)  I_(n,m)   = ∫_0 ^1 (1−x)^m (Σ_(n=0) ^∝  x^n   )  = ∫_0 ^1    (((1−x)^m )/(1−x))dx = ∫_0 ^1  (1−x)^(m−1) dx  = [((−1)/m)(1−x)^m ]_0 ^1 = (1/m)  for  m≥1  .let calculate I_(n,m)   by parts we have   I_(n,m) = [−(1/(m+1)) x^n (1−x)^(m+1) ]_0 ^1  +(1/(m+1))∫_0 ^1 nx^(n−1)  (1−x)^(m+1) dx  =(n/(m+1)) ∫_0 ^1   x^(n−1) (1−x)^(m+1) dx  I_(n,m)  =(n/(m+1)) I_(n−1,m+1) = (n/(m+1)) ((n−1)/(m+2)) I_(n−2,m+2)   =((n(n−1)....(n−p+1))/((m+1)(m+2)...(m+p))) I_(n−p,m+p)   = ((n!)/((m+1)(m+2) ....(m+n))) I_(0,m+n)   but  I_(0,m+n) =∫_0 ^1 (1−x)^(m+n) dx =[((−1)/(m+n+1))(1−x)^(m+n+1) ]_0 ^1   = (1/(m+n+1))  so  I_(n,m) =    ((n!)/((m+1)(m+2)...(m+n+1)))  I_(n,m) =  (((n!)(m!))/((m+n+1)!))  .
duetouniformconvergencewehaven=0+In,m=01(1x)m(n=0xn)=01(1x)m1xdx=01(1x)m1dx=[1m(1x)m]01=1mform1.letcalculateIn,mbypartswehaveIn,m=[1m+1xn(1x)m+1]01+1m+101nxn1(1x)m+1dx=nm+101xn1(1x)m+1dxIn,m=nm+1In1,m+1=nm+1n1m+2In2,m+2=n(n1).(np+1)(m+1)(m+2)(m+p)Inp,m+p=n!(m+1)(m+2).(m+n)I0,m+nbutI0,m+n=01(1x)m+ndx=[1m+n+1(1x)m+n+1]01=1m+n+1soIn,m=n!(m+1)(m+2)(m+n+1)In,m=(n!)(m!)(m+n+1)!.

Leave a Reply

Your email address will not be published. Required fields are marked *