find-I-n-m-0-1-x-n-1-x-m-dx-with-n-m-N-2-and-calculate-n-0-I-n-m- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27999 by abdo imad last updated on 18/Jan/18 findIn,m=∫01xn(1−x)mdxwith(n,m)∈N★2andcalculate∑n=0∝In,m. Commented by abdo imad last updated on 22/Jan/18 duetouniformconvergencewehave∑n=0+∞In,m=∫01(1−x)m(∑n=0∝xn)=∫01(1−x)m1−xdx=∫01(1−x)m−1dx=[−1m(1−x)m]01=1mform⩾1.letcalculateIn,mbypartswehaveIn,m=[−1m+1xn(1−x)m+1]01+1m+1∫01nxn−1(1−x)m+1dx=nm+1∫01xn−1(1−x)m+1dxIn,m=nm+1In−1,m+1=nm+1n−1m+2In−2,m+2=n(n−1)….(n−p+1)(m+1)(m+2)…(m+p)In−p,m+p=n!(m+1)(m+2)….(m+n)I0,m+nbutI0,m+n=∫01(1−x)m+ndx=[−1m+n+1(1−x)m+n+1]01=1m+n+1soIn,m=n!(m+1)(m+2)…(m+n+1)In,m=(n!)(m!)(m+n+1)!. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-27997Next Next post: A-2-7-3-9-4-A-a-b-c-d-Find-the-all-of-different-matrices-A-i-If-a-b-c-d-Z-ii-If-a-b-c-d-R- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.