Menu Close

find-I-n-p-0-x-n-e-px-with-n-and-p-from-N-




Question Number 30527 by abdo imad last updated on 22/Feb/18
find  I_(n,p) = ∫_0 ^∞   x^n  e^(−px)      with n and p from N^★  .
findIn,p=0xnepxwithnandpfromN.
Answered by sma3l2996 last updated on 23/Feb/18
I=∫_0 ^∞ x^n e^(−px) dx  u=x^n ⇒u′=nx^(n−1)   v′=e^(−px) ⇒v=((−1)/p)e^(−px)   I=−(1/p)[x^n e^(−px) ]_0 ^∞ +(n/p)∫_0 ^∞ x^(n−1) e^(−px) dx  (lim_(x→∞) x^n e^(−px) =0)  =(n/p)∫_0 ^∞ x^(n−1) e^(−px) dx  u=x^(n−1) ⇒u′=(n−1)x^(n−2)   v′=e^(−px) ⇒v=((−1)/p)e^(−px)   I=((n(n−1))/p^2 )∫_0 ^∞ x^(n−2) e^(−px) dx  .  .  .  k times  I=((n(n−1)(n−2)...(n−k+1))/p^k )∫_0 ^∞ x^(n−k) e^(−px) dx  .  .  .  n times  I=((n(n−1)(n−2)...(n−n+1))/p^n )∫_0 ^∞ e^(−px) dx  I=((n!)/p^n )[−(1/p)e^(−px) ]_0 ^∞ =((n!)/p^(n+1) )(−(lim_(x→∞) e^(−px) −e^0 ))  I=((n!)/p^(n+1) )
I=0xnepxdxu=xnu=nxn1v=epxv=1pepxI=1p[xnepx]0+np0xn1epxdx(limxxnepx=0)=np0xn1epxdxu=xn1u=(n1)xn2v=epxv=1pepxI=n(n1)p20xn2epxdx...ktimesI=n(n1)(n2)(nk+1)pk0xnkepxdx...ntimesI=n(n1)(n2)(nn+1)pn0epxdxI=n!pn[1pepx]0=n!pn+1((limexpxe0))I=n!pn+1

Leave a Reply

Your email address will not be published. Required fields are marked *