Menu Close

Find-image-of-plane-x-y-z-3-0-in-plane-2x-y-z-4-0-




Question Number 45417 by rahul 19 last updated on 12/Oct/18
Find image of plane x−y+z−3=0 in   plane 2x+y−z+4=0 ?
Findimageofplanexy+z3=0inplane2x+yz+4=0?
Answered by MrW3 last updated on 13/Oct/18
since both planes are perpendicular  to each other, the image is itself, i.e.  x−y+z−3=0    but I′ll show you a general way to find  the image in a plane.    the image of point (X,Y,Z) in plane  ax+by+cz+d=0  is point (U,V,W) with  U=X−((2a(aX+bY+cZ+d))/(a^2 +b^2 +c^2 ))  V=Y−((2b(aX+bY+cZ+d))/(a^2 +b^2 +c^2 ))  W=Z−((2c(aX+bY+cZ+d))/(a^2 +b^2 +c^2 ))    now we take a point P(u,v,w) on the plane  x−y+z−3=0  Its image in the plane  2x+y−z+4=0  is P′(p,q,r).  we can also say P(u,v,w) is the image  of P′(p,q,r). using formula above we get    u=p−((2×2(2p+q−r+4))/(2^2 +1^2 +(−1)^2 ))  ⇒u=p−((2(2p+q−r+4))/3)  similarly  ⇒v=q−((1(2p+q−r+4))/3)  ⇒w=r−(((−1)(2p+q−r+4))/3)    since u−v+w−3=0  p−((2(2p+q−r+4))/3)−q+(((2p+q−r+4))/3)+r+(((2p+q−r+4))/3)−3=0  ⇒p−q+r−3=0  or  ⇒x−y+z−3=0  this is the expected result.
sincebothplanesareperpendiculartoeachother,theimageisitself,i.e.xy+z3=0butIllshowyouageneralwaytofindtheimageinaplane.theimageofpoint(X,Y,Z)inplaneax+by+cz+d=0ispoint(U,V,W)withU=X2a(aX+bY+cZ+d)a2+b2+c2V=Y2b(aX+bY+cZ+d)a2+b2+c2W=Z2c(aX+bY+cZ+d)a2+b2+c2nowwetakeapointP(u,v,w)ontheplanexy+z3=0Itsimageintheplane2x+yz+4=0isP(p,q,r).wecanalsosayP(u,v,w)istheimageofP(p,q,r).usingformulaabovewegetu=p2×2(2p+qr+4)22+12+(1)2u=p2(2p+qr+4)3similarlyv=q1(2p+qr+4)3w=r(1)(2p+qr+4)3sinceuv+w3=0p2(2p+qr+4)3q+(2p+qr+4)3+r+(2p+qr+4)33=0pq+r3=0orxy+z3=0thisistheexpectedresult.
Commented by rahul 19 last updated on 13/Oct/18
Thank you so much sir ! ☺️�� In the formula you posted , if we need to find foot of perpendicular then this factor 2 will not come . right?
Commented by MrW3 last updated on 13/Oct/18
yes sir.  foot point (U′,V′,W′)  U′=((X+U)/2)=(X/2)+(X/2)−((a(aX+bY+cZ+d))/(a^2 +b^2 +c^2 ))  ⇒U′=X−((a(aX+bY+cZ+d))/(a^2 +b^2 +c^2 ))
yessir.footpoint(U,V,W)U=X+U2=X2+X2a(aX+bY+cZ+d)a2+b2+c2U=Xa(aX+bY+cZ+d)a2+b2+c2
Commented by MrW3 last updated on 13/Oct/18
this formula is easy to remember  and be used for example  to find the distance of point (X,Y,Z) to  a plane:  d=(√((X−U′)^2 +(Y−V′)^2 +(Z−W′)^2 ))  =((∣aX+bY+cZ+d∣)/(a^2 +b^2 +c^2 ))(√(a^2 +b^2 +c^2 ))  =((∣aX+bY+cZ+d∣)/( (√(a^2 +b^2 +c^2 ))))
thisformulaiseasytorememberandbeusedforexampletofindthedistanceofpoint(X,Y,Z)toaplane:d=(XU)2+(YV)2+(ZW)2=aX+bY+cZ+da2+b2+c2a2+b2+c2=aX+bY+cZ+da2+b2+c2
Commented by rahul 19 last updated on 13/Oct/18
ok sir.
oksir.

Leave a Reply

Your email address will not be published. Required fields are marked *