Menu Close

find-in-terms-of-0-e-t-sint-t-dt-with-gt-0-




Question Number 28756 by abdo imad last updated on 29/Jan/18
find in terms of λ ∫_0 ^∞   e^(−λt)  ((sint)/( (√t))) dt  with  λ>0
findintermsofλ0eλtsinttdtwithλ>0
Commented by abdo imad last updated on 30/Jan/18
let put I= ∫_0 ^∞  e^(−λt)   ((sint)/( (√t)))dt   with  λ>0 the ch.(√t) =x give  I= ∫_0 ^∞   e^(−λx^2   ) ((sin(x^2 ))/x) 2xdx =2∫_0 ^∞  e^(−λx^2 )  sin(x^2 )dx  = ∫_(−∞) ^(+∞)  e^(−λx^2 )  sin(x^2 )dx=− Im (∫_(−∞) ^(+∞)   e^(−λx^2  −ix^2 ) dx) but  ∫_(−∞) ^(+∞)   e^(−λx^2  −ix^2 ) dx = ∫_(−∞) ^(+∞)   e^(−(λ+i)x^2 ) dx= ∫_(−∞) ^(+∞)  e^(−((√(λ+i))x)^2 )  dx     = ∫_(−∞ ) ^(+∞)   e^(−u^2 )   (du/( (√(λ+i))))        (ch.(√(λ+i)) x=u)  =(λ +i)^(−(1/2)) .(√π)         we have  λ+i= (√(1+λ^2 )) (  (λ/( (√(1+λ^2  ))))  +(i/( (√(1+λ^2 )))) ) =r e^(iθ)  ⇒r=(√(1+λ^2 ))  and cosθ= (λ/( (√(1+λ^2  ))))    and sinθ= (1/( (√(1+λ^2 )) ))  ⇒tanθ=(1/λ)  ⇒θ= arctan((1/λ)) so λ+i=(1+λ^2 )^(1/2)  e^(iarctan((1/λ)))   λ+i= (1+λ^2 )^(1/2)  e^(i((π/2) −arctanλ))   ⇒ (λ+i)^(−(1/2))  =(1+λ^2 )^(−(1/4))  e^(i( ((−π)/4) +((arctanλ)/2)))   =(1+λ^2 )^(−(1/4))  (cos( ((−π)/4) +((arctanλ)/2)) +isin(((−π)/4)+((arctanλ)/2)))  I=−Im((√π)(λ+i)^(−(1/2)) )=−(√π)sin(((−π)/4) +((artanλ)/2))  =(√π) sin((π/4) −((arctanλ)/2)) .
letputI=0eλtsinttdtwithλ>0thech.t=xgiveI=0eλx2sin(x2)x2xdx=20eλx2sin(x2)dx=+eλx2sin(x2)dx=Im(+eλx2ix2dx)but+eλx2ix2dx=+e(λ+i)x2dx=+e(λ+ix)2dx=+eu2duλ+i(ch.λ+ix=u)=(λ+i)12.πwehaveλ+i=1+λ2(λ1+λ2+i1+λ2)=reiθr=1+λ2andcosθ=λ1+λ2andsinθ=11+λ2tanθ=1λθ=arctan(1λ)soλ+i=(1+λ2)12eiarctan(1λ)λ+i=(1+λ2)12ei(π2arctanλ)(λ+i)12=(1+λ2)14ei(π4+arctanλ2)=(1+λ2)14(cos(π4+arctanλ2)+isin(π4+arctanλ2))I=Im(π(λ+i)12)=πsin(π4+artanλ2)=πsin(π4arctanλ2).

Leave a Reply

Your email address will not be published. Required fields are marked *