Menu Close

Find-in-terms-of-using-the-equations-i-u-2-sin-2-2gd-cos-ii-t-u-cos-g-sin-iii-d-ut-sin-gt-2-sin-2-




Question Number 21441 by Tinkutara last updated on 23/Sep/17
Find α in terms of θ using the equations:  (i) u^2  sin^2  α = 2gd cos θ  (ii) t = ((u cos α)/(g sin θ))  (iii) −d = ut sin α − ((gt^2  sin θ)/2)
Findαintermsofθusingtheequations:(i)u2sin2α=2gdcosθ(ii)t=ucosαgsinθ(iii)d=utsinαgt2sinθ2
Answered by $@ty@m last updated on 24/Sep/17
Substituting the value of t in (iii)  −d = u(((u cos α)/(g sin θ)))sin α − g(((u cos α)/(g sin θ)))^2 ((sin)/2)  −dgsin θ=u^2 cos αsin α−(1/2)u^2 cos^2 α  −2dgsinθ=u^2 sin2α−u^2 cos^2 α     −2dgsinθ=u^2 sin2α−u^2 (1−sin^2 α)   u^2 −2dgsinθ=u^2 sin2α+u^2 sin^2 α  u^2 −2dgsinθ=u^2 sin2α+2dgcosθ   u^2 −2dgsinθ−2dgcosθ =u^2 sin2α   u^2 sin2α=u^2 −2dg(sinθ+cosθ)     sin2α=1−((2dg(sinθ+cosθ))/u^2 )   α=(1/2)sin^(−1) {1−((2dg(sinθ+cosθ))/u^2 ) }
Substitutingthevalueoftin(iii)d=u(ucosαgsinθ)sinαg(ucosαgsinθ)2sin2dgsinθ=u2cosαsinα12u2cos2α2dgsinθ=u2sin2αu2cos2α2dgsinθ=u2sin2αu2(1sin2α)u22dgsinθ=u2sin2α+u2sin2αu22dgsinθ=u2sin2α+2dgcosθu22dgsinθ2dgcosθ=u2sin2αu2sin2α=u22dg(sinθ+cosθ)sin2α=12dg(sinθ+cosθ)u2α=12sin1{12dg(sinθ+cosθ)u2}
Commented by Tinkutara last updated on 24/Sep/17
What if the 3^(rd)  equation was  −d=utsin α−((gt^2 cos θ)/2)?
Whatifthe3rdequationwasd=utsinαgt2cosθ2?
Commented by $@ty@m last updated on 24/Sep/17
in that case t would be ((ucos α)/(gcos θ))  and the procedure would be   similar.
inthatcasetwouldbeucosαgcosθandtheprocedurewouldbesimilar.
Commented by Tinkutara last updated on 24/Sep/17
Not everywhere cos θ, only in 3^(rd)   equation.
Noteverywherecosθ,onlyin3rdequation.
Commented by $@ty@m last updated on 24/Sep/17
In that case it would result in   an implicit function.
Inthatcaseitwouldresultinanimplicitfunction.
Commented by Tinkutara last updated on 24/Sep/17
Yes, can you solve it? Because it is  required in a Physics question.
Yes,canyousolveit?BecauseitisrequiredinaPhysicsquestion.
Commented by $@ty@m last updated on 24/Sep/17
In an implicit fnction  one variable cannot be expressed  in terms of another variable.  In my opnion,  in such Physics question,  there would be one more relation  between the variables.
Inanimplicitfnctiononevariablecannotbeexpressedintermsofanothervariable.Inmyopnion,insuchPhysicsquestion,therewouldbeonemorerelationbetweenthevariables.

Leave a Reply

Your email address will not be published. Required fields are marked *