Menu Close

find-in-the-form-y-f-x-the-general-solution-of-the-differentail-equation-d-2-y-dx-2-dy-dx-6y-e-3x-




Question Number 87751 by Rio Michael last updated on 06/Apr/20
find in the form y= f(x) the general solution   of the differentail equation      (d^2 y/dx^2 ) −(dy/dx)−6y = e^(3x)
findintheformy=f(x)thegeneralsolutionofthedifferentailequationd2ydx2dydx6y=e3x
Commented by niroj last updated on 06/Apr/20
  (d^2 y/dx^2 )−(dy/dx)−6y=e^(3x)     let, (d^2 y/dx^2 )=D^2 y and (dy/dx)=Dy     (D^2 −D−6)y=e^(3x)     Auxilairy Equation,       m^2 −m−6=0       m^2 −3m+2m−6=0     m(m−3)+2(m−3)=0           (m−3)(m+2)=0       m= 3,−2    Complementary Fuction = C_1 e^(3x) +C_2 e^(−2x)     Particular Integral= (e^(3x) /(D^2 −D−6))        = ((x.e^(3x) )/(2D−1))= ((xe^(3x) )/(6−1))= ((xe^(3x) )/5)      y= f(x)=CF+PI      y= C_1 e^(3x) +C_2 e^(−2x) + ((xe^(3x) )/5)//.
d2ydx2dydx6y=e3xlet,d2ydx2=D2yanddydx=Dy(D2D6)y=e3xAuxilairyEquation,m2m6=0m23m+2m6=0m(m3)+2(m3)=0(m3)(m+2)=0m=3,2ComplementaryFuction=C1e3x+C2e2xParticularIntegral=e3xD2D6=x.e3x2D1=xe3x61=xe3x5y=f(x)=CF+PIy=C1e3x+C2e2x+xe3x5//.
Commented by Rio Michael last updated on 06/Apr/20
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *