Menu Close

find-integral-solution-of-y-2-x-3-1-




Question Number 98602 by bemath last updated on 15/Jun/20
find integral solution  of y^2  = x^3 +1
findintegralsolutionofy2=x3+1
Commented by bemath last updated on 15/Jun/20
oo yes sir. thank you
ooyessir.thankyou
Commented by Rasheed.Sindhi last updated on 15/Jun/20
Sir (1,±2) doesn′t satisfy:       (±2)^2 ≠(1)^3 +1           4≠2  I′ve extended my answer and now  it includes all solutions.
Sir(1,±2)doesntsatisfy:(±2)2(1)3+142Iveextendedmyanswerandnowitincludesallsolutions.
Commented by Rasheed.Sindhi last updated on 15/Jun/20
y^2 =x^3 +1  ^• x^3 +1 is perfect square.It may be  0 also provided that x is an integer.  So y^2 =x^3 +1=0               x^3 =−1              x=−1⇒y=0             (−1,0)  ^• y^2 =(x+1)(x^2 −x+1)  x+1=x^2 −x+1  x^2 −2x=0  x(x−2)=0  x=0  ∣ x=2  x=0⇒y^2 =0^3 +1⇒y=±1  x=2⇒y^2 =2^3 +1⇒y=±3  (−1,0),(0,±1),(2,±3)
y2=x3+1x3+1isperfectsquare.Itmaybe0alsoprovidedthatxisaninteger.Soy2=x3+1=0x3=1x=1y=0(1,0)y2=(x+1)(x2x+1)x+1=x2x+1x22x=0x(x2)=0x=0x=2x=0y2=03+1y=±1x=2y2=23+1y=±3(1,0),(0,±1),(2,±3)
Commented by bemath last updated on 15/Jun/20
sir i got (−1,0), (1,±2), (2,±3)
sirigot(1,0),(1,±2),(2,±3)
Commented by 1549442205 last updated on 15/Jun/20
but remain the case that x+1=u^2 ,  x^2 −x+1=v^2 ,doesn′t consider?
butremainthecasethatx+1=u2,x2x+1=v2,doesntconsider?
Commented by Rasheed.Sindhi last updated on 15/Jun/20
Thank you sir! I′ll try to complete  my answer.
Thankyousir!Illtrytocompletemyanswer.
Answered by Rasheed.Sindhi last updated on 17/Jun/20
y^2 =(x+1)(x^2 −x+1)  Let x+1=u^2 , x^2 −x+1=v^2   x=u^2 −1,x^2 −x+1                  =(u^2 −1)^2 −(u^2 −1)+1=v^2    ⇒u^4 −2u^2 +1−u^2 +1+1=v^2    ⇒u^4 −3u^2 +3−v^2 =0     u^2 =((3±(√(9−4(3−v^2 ))))/2)     u^2 =((3±(√(9−12+4v^2 )))/2)  ⇒4v^2 −3=p^2   ⇒4v^2 −p^2 =3       (2v−p)(2v+p)=3      ( 2v−p=1∧2v+p=3 ) ∣ ( 2v−p=3∧2v+p=1)     p=1,v=1  ∣  p=−1,v=1  u^2 =((3±(√(4v^2 −3)))/2)=((3±(√(4(1)^2 −3)))/2)     =((3±1)/2)=2,1  ^• x=u^2 −1=(1)^2 −1=0⇒y^2 =x^3 +1  ⇒y^2 =1⇒y=±1  (0,±1)  ^• x=u^2 −1=2−1=1⇒y^2 =1^3 +1  ⇒y=±(√2)    (Not exceptable)  So when x+1 & x^2 −x+1 are both  perfect square (x,y)=(0,±1)
y2=(x+1)(x2x+1)Letx+1=u2,x2x+1=v2x=u21,x2x+1=(u21)2(u21)+1=v2u42u2+1u2+1+1=v2u43u2+3v2=0u2=3±94(3v2)2u2=3±912+4v224v23=p24v2p2=3(2vp)(2v+p)=3(2vp=12v+p=3)(2vp=32v+p=1)p=1,v=1p=1,v=1u2=3±4v232=3±4(1)232=3±12=2,1x=u21=(1)21=0y2=x3+1y2=1y=±1(0,±1)x=u21=21=1y2=13+1y=±2(Notexceptable)Sowhenx+1&x2x+1arebothperfectsquare(x,y)=(0,±1)
Answered by Rasheed.Sindhi last updated on 18/Jun/20
Another method  (y−1)(y+1)=x.x^2   ⇒y−1=(y+1)^2  ∣ y+1=(y−1)^2    ^• y=y^2 +2y+2     y^2 +y+2=0      y=((−1±(√(1−8)))/2)      y∉Z   ^• y+1=y^2 −2y+1     y^2 −3y=0   y(y−3)=0    y=0 ∣ y=3  x^3 +1=y^2   x^3 =(0)^2 −1=−1       (−1,0)  x^3 =(3)^2 −1  x=2     (2,3)
Anothermethod(y1)(y+1)=x.x2y1=(y+1)2y+1=(y1)2y=y2+2y+2y2+y+2=0y=1±182yZy+1=y22y+1y23y=0y(y3)=0y=0y=3x3+1=y2x3=(0)21=1(1,0)x3=(3)21x=2(2,3)

Leave a Reply

Your email address will not be published. Required fields are marked *