Menu Close

find-integrate-xe-x-dx-




Question Number 172010 by Mikenice last updated on 23/Jun/22
find integrate:  ∫xe^x dx
$${find}\:{integrate}: \\ $$$$\int{xe}^{{x}} {dx} \\ $$
Answered by puissant last updated on 23/Jun/22
K=∫xe^x dx  ;   { ((u′=e^x )),((v=x)) :}⇒  { ((u=e^x )),((v′=1)) :}  ⇒ K=[xe^x ]−∫e^x dx  ⇒ K=e^x (x−1)+C
$${K}=\int{xe}^{{x}} {dx}\:\:;\:\:\begin{cases}{{u}'={e}^{{x}} }\\{{v}={x}}\end{cases}\Rightarrow\:\begin{cases}{{u}={e}^{{x}} }\\{{v}'=\mathrm{1}}\end{cases} \\ $$$$\Rightarrow\:{K}=\left[{xe}^{{x}} \right]−\int{e}^{{x}} {dx} \\ $$$$\Rightarrow\:{K}={e}^{{x}} \left({x}−\mathrm{1}\right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *