find-interms-of-n-the-sum-k-0-n-k-2-C-n-k- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 33074 by prof Abdo imad last updated on 10/Apr/18 findintermsofnthesum∑k=0nk2Cnk Commented by abdo imad last updated on 10/Apr/18 letconsiderthepolynomp(x)=∑k=0nCnkxkweknowthatp(x)=(x+1)n⇒p′(x)=n(x+1)n−1⇒p″(x)=n(n−1)(x+1)n−2fromanothersidep′(x)=∑k=1nkCnkxk−1andp″(x)=∑k=2nk(k−1)Cnkxk−2=∑k=2nk2Cnkxk−2−∑k=2nkCnkxk−2⇒∑k=2nk2Cnkxk−2=p″(x)+∑k=2nkCnkxk−2x=1⇒∑k=2nk2Cnk=p″(1)+∑k=2nkCnk=n(n−1)2n−2+n2n−1−1⇒∑k=1nk2Cnk=n(n−1)2n−2+n2n−1.=(n2−n)2n−2+2n2n−2=(n2+n)2n−2.∑k=1nk2Cnk=(n2+n)2n−2. Answered by sma3l2996 last updated on 10/Apr/18 ∑nk=0k2nCk=??k2nCk=k×knCk=k×nn−1Ck−1so∑nk=0k2nCk=n∑nk=1kn−1Ck−1letl=k−1∑nk=1kn−1Ck−1=∑n−1l=0(l+1)n−1Cl=∑n−1l=0ln−1Cl+∑n−1l=0n−1Clwealreadyknewthat∑nk=0nCk=2nand∑nl=0lnCl=2n−1n(checkQ33072)So∑nk=0k2nCk=n(∑n−1k=0kn−1Ck+∑n−1k=0n−1Ck)=n(2n−2(n−1)+2n−1)∑nk=0k2nCk=2n−2n(n+1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-x-2-e-x-Next Next post: Question-98613 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.