Menu Close

find-interms-of-n-the-sum-k-0-n-k-2-C-n-k-




Question Number 33074 by prof Abdo imad last updated on 10/Apr/18
find interms of n  the sum Σ_(k=0) ^n  k^2   C_n ^k
findintermsofnthesumk=0nk2Cnk
Commented by abdo imad last updated on 10/Apr/18
let consider the polynom p(x)= Σ_(k=0) ^n   C_n ^k   x^k   we know that p(x)= (x+1)^n   ⇒p^′ (x)=n(x+1)^(n−1) ⇒  p^(′′) (x) =n(n−1)(x+1)^(n−2)   from another side  p^′ (x)= Σ_(k=1) ^n  k C_n ^k   x^(k−1)   and  p^(′′) (x) = Σ_(k=2) ^n  k(k−1) C_n ^k  x^(k−2)   = Σ_(k=2) ^n  k^2  C_n ^k  x^(k−2)   −Σ_(k=2) ^n k C_n ^k  x^(k−2)   ⇒Σ_(k=2) ^n  k^2  C_n ^k  x^(k−2) = p^(′′) (x) + Σ_(k=2) ^n  k C_n ^k  x^(k−2)   x=1⇒ Σ_(k=2) ^n  k^2  C_n ^k   =p^(′′) (1) + Σ_(k=2) ^n  k C_n ^k   =n(n−1) 2^(n−2)   +n 2^(n−1)  −1 ⇒  Σ_(k=1) ^n   k^2   C_n ^k    = n(n−1)2^(n−2)    +n 2^(n−1)   .  =(n^2 −n) 2^(n−2)   + 2n 2^(n−2)   =(n^2  +n) 2^(n−2)   .  Σ_(k=1) ^n   k^2  C_n ^k   = (n^2  +n) 2^(n−2)    .
letconsiderthepolynomp(x)=k=0nCnkxkweknowthatp(x)=(x+1)np(x)=n(x+1)n1p(x)=n(n1)(x+1)n2fromanothersidep(x)=k=1nkCnkxk1andp(x)=k=2nk(k1)Cnkxk2=k=2nk2Cnkxk2k=2nkCnkxk2k=2nk2Cnkxk2=p(x)+k=2nkCnkxk2x=1k=2nk2Cnk=p(1)+k=2nkCnk=n(n1)2n2+n2n11k=1nk2Cnk=n(n1)2n2+n2n1.=(n2n)2n2+2n2n2=(n2+n)2n2.k=1nk2Cnk=(n2+n)2n2.
Answered by sma3l2996 last updated on 10/Apr/18
Σ_(k=0) ^n k^2 ^n C_k =??  k^2 ^n C_k =k×k^n C_k =k×n^(n−1) C_(k−1)   so  Σ_(k=0) ^n k^2 ^n C_k =nΣ_(k=1) ^n k ^(n−1) C_(k−1)   let  l=k−1  Σ_(k=1) ^n k ^(n−1) C_(k−1) =Σ_(l=0) ^(n−1) (l+1)^(n−1) C_l   =Σ_(l=0) ^(n−1) l ^(n−1) C_l +Σ_(l=0) ^(n−1) ^(n−1) C_l   we already knew  that  Σ_(k=0) ^n  ^n C_k =2^n   and  Σ_(l=0) ^n l ^n C_l =2^(n−1) n   (check  Q 33072)  So  Σ_(k=0) ^n k^2 ^n C_k =n(Σ_(k=0) ^(n−1) k ^(n−1) C_k +Σ_(k=0) ^(n−1) ^(n−1) C_k )  =n(2^(n−2) (n−1)+2^(n−1) )  Σ_(k=0) ^n k^2 ^n C_k =2^(n−2) n(n+1)
nk=0k2nCk=??k2nCk=k×knCk=k×nn1Ck1sonk=0k2nCk=nnk=1kn1Ck1letl=k1nk=1kn1Ck1=n1l=0(l+1)n1Cl=n1l=0ln1Cl+n1l=0n1Clwealreadyknewthatnk=0nCk=2nandnl=0lnCl=2n1n(checkQ33072)Sonk=0k2nCk=n(n1k=0kn1Ck+n1k=0n1Ck)=n(2n2(n1)+2n1)nk=0k2nCk=2n2n(n+1)

Leave a Reply

Your email address will not be published. Required fields are marked *