Menu Close

find-J-0-1-e-ax-ln-1-e-bx-dx-with-a-gt-0-and-b-gt-0-




Question Number 35590 by abdo mathsup 649 cc last updated on 20/May/18
find  J  = ∫_0 ^1   e^(−ax) ln(1+e^(−bx) )dx with a>0 and  b>0 .
$${find}\:\:{J}\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx}\:{with}\:{a}>\mathrm{0}\:{and} \\ $$$${b}>\mathrm{0}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *