Menu Close

find-J-x-0-dt-x-e-t-




Question Number 29971 by abdo imad last updated on 14/Feb/18
find J(x)= ∫_0 ^∞   (dt/(x+e^t ))    ?.
findJ(x)=0dtx+et?.
Commented by abdo imad last updated on 16/Feb/18
J(x)= ∫_0 ^∞    (dt/(e^t ( 1+x e^(−t) ))) =∫_0 ^∞  e^(−t)  (Σ_(n=0) ^∞  x^n e^(−nt) )dt  = Σ_(n=0) ^∞   x^n   ∫_0 ^∞  e^(−(n+1)t) dt  the (n+1)t=u give  ∫_0 ^∞   e^(−(n+1)t) dt= ∫_0 ^∞  e^(−u)  (du/(n+1)) =(1/(n+1)) [−e^(−u) ]_0 ^(+∞)  =(1/(n+1))  J(x)= Σ_(n=0) ^∞   (x^n /(n+1)) ⇒ x J(x)=Σ_(n=0) ^∞  (x^(n+1) /(n+1)) let derivate  J(x) +xJ^′ (x)= Σ_(n=0) ^∞  x^n  = (1/(1−x)) so J is solution of the  d.e y +xy^′   =(1/(1−x))  eh⇒ xy^′ =−y ⇒(y^′ /y) =((−1)/x) ⇒  ln∣y∣= −ln∣x∣+c ⇒y= (λ/x)  mvc method give  y^′  =((λ^′ x −λ)/x^2 ) ⇒(λ/x) +λ^′  −(λ/x) = (1/(1−x)) ⇒λ(x)=∫ (dx/(1−x)) +κ  =−ln∣1−x∣ +k but k=λ(0)=0  y(x)=−(1/x)ln∣1−x∣ ⇒ J(x)=−(1/x)ln∣1−x∣ .
J(x)=0dtet(1+xet)=0et(n=0xnent)dt=n=0xn0e(n+1)tdtthe(n+1)t=ugive0e(n+1)tdt=0eudun+1=1n+1[eu]0+=1n+1J(x)=n=0xnn+1xJ(x)=n=0xn+1n+1letderivateJ(x)+xJ(x)=n=0xn=11xsoJissolutionofthed.ey+xy=11xehxy=yyy=1xlny∣=lnx+cy=λxmvcmethodgivey=λxλx2λx+λλx=11xλ(x)=dx1x+κ=ln1x+kbutk=λ(0)=0y(x)=1xln1xJ(x)=1xln1x.
Commented by abdo imad last updated on 16/Feb/18
the Q. is find J(x)=∫_0 ^∞   (dt/(x +e^t )) with ∣x∣<1.
theQ.isfindJ(x)=0dtx+etwithx∣<1.

Leave a Reply

Your email address will not be published. Required fields are marked *