Menu Close

find-k-0-arctan-1-k-2-k-1-




Question Number 28622 by abdo imad last updated on 28/Jan/18
find  Σ_(k=0) ^(+∞)  arctan( (1/(k^2 +k+1))) .
$${find}\:\:\sum_{{k}=\mathrm{0}} ^{+\infty} \:{arctan}\left(\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\right)\:. \\ $$
Commented by abdo imad last updated on 30/Jan/18
let put S_n =Σ_(k=0) ^n  arctan ( (1/(k^2 +k+1))) we have   (1/(k^2 +k+1))=  (1/(1+k(k+1)))= ((k+1−k)/(1+k(k+1) )) let put  k=tan(u_k )  = ((tan(u_(k+1) ) −tan(u_k ))/(1+tan(u_k )tan(u_(k+1) )))=tan( u_(k+1)  −u_k )⇒  artan((1/(k^2 +k+1)))=u_(k+1)  −u_k     and  S_n = Σ_(k=0) ^n ( u_(k+1) −u_k )= u_1 −u_0  +u_2 −u_(1 ) +....+u_(n+1) −u_n   = u_(n+1)  −u_0 = arctan(n+1) ⇒lim_(n→+∞)  S_n =(π/4) .
$${let}\:{put}\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{arctan}\:\left(\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\right)\:{we}\:{have} \\ $$$$\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{k}+\mathrm{1}}=\:\:\frac{\mathrm{1}}{\mathrm{1}+{k}\left({k}+\mathrm{1}\right)}=\:\frac{{k}+\mathrm{1}−{k}}{\mathrm{1}+{k}\left({k}+\mathrm{1}\right)\:}\:{let}\:{put}\:\:{k}={tan}\left({u}_{{k}} \right) \\ $$$$=\:\frac{{tan}\left({u}_{{k}+\mathrm{1}} \right)\:−{tan}\left({u}_{{k}} \right)}{\mathrm{1}+{tan}\left({u}_{{k}} \right){tan}\left({u}_{{k}+\mathrm{1}} \right)}={tan}\left(\:{u}_{{k}+\mathrm{1}} \:−{u}_{{k}} \right)\Rightarrow \\ $$$${artan}\left(\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\right)={u}_{{k}+\mathrm{1}} \:−{u}_{{k}} \:\:\:\:{and} \\ $$$${S}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \left(\:{u}_{{k}+\mathrm{1}} −{u}_{{k}} \right)=\:{u}_{\mathrm{1}} −{u}_{\mathrm{0}} \:+{u}_{\mathrm{2}} −{u}_{\mathrm{1}\:} +….+{u}_{{n}+\mathrm{1}} −{u}_{{n}} \\ $$$$=\:{u}_{{n}+\mathrm{1}} \:−{u}_{\mathrm{0}} =\:{arctan}\left({n}+\mathrm{1}\right)\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\pi}{\mathrm{4}}\:. \\ $$
Commented by abdo imad last updated on 30/Jan/18
lim_(n→+∞)  S_n    = (π/2).
$${lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \:\:\:=\:\frac{\pi}{\mathrm{2}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *