Menu Close

find-k-0-n-C-n-k-cos-kpi-n-




Question Number 90749 by abdomathmax last updated on 25/Apr/20
find Σ_(k=0) ^n  C_n ^k  cos(((kπ)/n))
findk=0nCnkcos(kπn)
Commented by mathmax by abdo last updated on 26/Apr/20
A_n =Σ_(k=0) ^n  C_n ^k  cos(((kπ)/n)) ⇒A_n =Re(Σ_(k=0) ^n  C_n ^k  e^((ikπ)/n) )  we have Σ_(k=0) ^n  C_n ^k  e^((ikπ)/n)  =Σ_(k=0) ^n  C_n ^k  (e^((iπ)/n) )^k   =(1+e^((iπ)/n) )^n  =(1+cos((π/n))+isin((π/n)))^n   =(2cos^2 ((π/(2n)))+2isin((π/(2n)))cos((π/(2n)))^n   =(2cos((π/(2n)))e^((iπ)/(2n)) )^n  =2^n  cos^n ((π/(2n)))e^(i(π/2))  =2^n  cos^n ((π/(2n)))i ⇒A_n =0
An=k=0nCnkcos(kπn)An=Re(k=0nCnkeikπn)wehavek=0nCnkeikπn=k=0nCnk(eiπn)k=(1+eiπn)n=(1+cos(πn)+isin(πn))n=(2cos2(π2n)+2isin(π2n)cos(π2n)n=(2cos(π2n)eiπ2n)n=2ncosn(π2n)eiπ2=2ncosn(π2n)iAn=0

Leave a Reply

Your email address will not be published. Required fields are marked *