Menu Close

find-k-0-n-C-n-k-cos-kpi-n-




Question Number 90749 by abdomathmax last updated on 25/Apr/20
find Σ_(k=0) ^n  C_n ^k  cos(((kπ)/n))
$${find}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}\left(\frac{{k}\pi}{{n}}\right) \\ $$
Commented by mathmax by abdo last updated on 26/Apr/20
A_n =Σ_(k=0) ^n  C_n ^k  cos(((kπ)/n)) ⇒A_n =Re(Σ_(k=0) ^n  C_n ^k  e^((ikπ)/n) )  we have Σ_(k=0) ^n  C_n ^k  e^((ikπ)/n)  =Σ_(k=0) ^n  C_n ^k  (e^((iπ)/n) )^k   =(1+e^((iπ)/n) )^n  =(1+cos((π/n))+isin((π/n)))^n   =(2cos^2 ((π/(2n)))+2isin((π/(2n)))cos((π/(2n)))^n   =(2cos((π/(2n)))e^((iπ)/(2n)) )^n  =2^n  cos^n ((π/(2n)))e^(i(π/2))  =2^n  cos^n ((π/(2n)))i ⇒A_n =0
$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{cos}\left(\frac{{k}\pi}{{n}}\right)\:\Rightarrow{A}_{{n}} ={Re}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{e}^{\frac{{ik}\pi}{{n}}} \right) \\ $$$${we}\:{have}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{e}^{\frac{{ik}\pi}{{n}}} \:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left({e}^{\frac{{i}\pi}{{n}}} \right)^{{k}} \\ $$$$=\left(\mathrm{1}+{e}^{\frac{{i}\pi}{{n}}} \right)^{{n}} \:=\left(\mathrm{1}+{cos}\left(\frac{\pi}{{n}}\right)+{isin}\left(\frac{\pi}{{n}}\right)\right)^{{n}} \\ $$$$=\left(\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}{n}}\right)+\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{2}{n}}\right){cos}\left(\frac{\pi}{\mathrm{2}{n}}\right)^{{n}} \right. \\ $$$$=\left(\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{2}{n}}\right){e}^{\frac{{i}\pi}{\mathrm{2}{n}}} \right)^{{n}} \:=\mathrm{2}^{{n}} \:{cos}^{{n}} \left(\frac{\pi}{\mathrm{2}{n}}\right){e}^{{i}\frac{\pi}{\mathrm{2}}} \:=\mathrm{2}^{{n}} \:{cos}^{{n}} \left(\frac{\pi}{\mathrm{2}{n}}\right){i}\:\Rightarrow{A}_{{n}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *