Menu Close

find-k-0-n-k-C-n-k-




Question Number 33072 by prof Abdo imad last updated on 10/Apr/18
find  Σ_(k=0) ^n  k C_n ^k  .
findk=0nkCnk.
Commented by abdo imad last updated on 10/Apr/18
let consider the polynome p(x)= Σ_(k=0) ^n  C_n ^k   x^k   p(x)=(x+1)^n    and  p^′ (x)= n(x+1)^(n−1)   and from  another side p^′ (x)= Σ_(k=1) ^n  k C_n ^k  x^(k−1) ⇒  p^′ (1) = Σ_(k=1) ^n  k C_n ^k    = n 2^(n−1)   .
letconsiderthepolynomep(x)=k=0nCnkxkp(x)=(x+1)nandp(x)=n(x+1)n1andfromanothersidep(x)=k=1nkCnkxk1p(1)=k=1nkCnk=n2n1.
Answered by sma3l2996 last updated on 10/Apr/18
k^n C_k =((n!)/((k−1)(n−k)!))=((n(n−1)!)/((k−1)!(n−1−(k−1))!))=n^(n−1) C_(k−1)   So  Σ_(k=0) ^n k^n C_k =nΣ_(k=1) ^n ^(n−1) C_(k−1)   We have  Σ_(k=0) ^n ^n C_k =2^n   let l=k−1  So Σ_(k=1) ^n ^(n−1) C_(k−1) =Σ_(l=0) ^(n−1) ^(n−1) C_l =2^(n−1)    Σ_(k=0) ^n k^n C_k =2^(n−1) n
knCk=n!(k1)(nk)!=n(n1)!(k1)!(n1(k1))!=nn1Ck1Sonk=0knCk=nnk=1n1Ck1Wehavenk=0nCk=2nletl=k1Sonk=1n1Ck1=n1l=0n1Cl=2n1nk=0knCk=2n1n

Leave a Reply

Your email address will not be published. Required fields are marked *