Menu Close

find-L-1-cosx-x-2-with-L-lsplace-transform-




Question Number 88415 by abdomathmax last updated on 10/Apr/20
find L(((1−cosx)/x^2 )) with L lsplace transform
findL(1cosxx2)withLlsplacetransform
Commented by jagoll last updated on 10/Apr/20
L(1−cos x) = 1−(x/(x^2 +1)) = ((x^2 −x+1)/(x^2 +1))  L(((1−cos x)/x)) = (d/dx) [((x^2 −x+1)/(x^2 +1))]  = (((2x−1)(x^2 +1)−2x(x^2 −x+1))/((x^2 +1)^2 ))  = ((2x^3 −x^2 +2x−1−2x^3 +2x^2 −2x)/((x^2 +1)^2 ))  = ((x^2 −1)/((x^2 +1)^2 ))  L(((1−cos x)/x^2 )) = (d/dx)[((x^2 −1)/((x^2 +1)^2 ))]  = ((2x(x^2 +1)^2 −4x(x^2 +1)(x^2 −1))/((x^2 +1)^4 ))  = ((2x(x^2 +1){x^2 +1−2(x^2 −1)})/((x^2 +1)^4 ))  = ((2x(−x^2 +3))/((x^2 +1)^3 )) = ((−2x^3 +6x)/((x^2 +1)^3 ))
L(1cosx)=1xx2+1=x2x+1x2+1L(1cosxx)=ddx[x2x+1x2+1]=(2x1)(x2+1)2x(x2x+1)(x2+1)2=2x3x2+2x12x3+2x22x(x2+1)2=x21(x2+1)2L(1cosxx2)=ddx[x21(x2+1)2]=2x(x2+1)24x(x2+1)(x21)(x2+1)4=2x(x2+1){x2+12(x21)}(x2+1)4=2x(x2+3)(x2+1)3=2x3+6x(x2+1)3
Commented by mathmax by abdo last updated on 10/Apr/20
L(((1−cosx)/x^2 )) =∫_0 ^∞   f(t)e^(−xt)  dt =∫_0 ^∞  ((1−cost)/t^2 ) e^(−xt)  dt       (x>0)  =ϕ(x) ⇒ϕ^′ (x)=−∫_0 ^∞   ((1−cost)/t) e^(−xt)  dt ⇒  ϕ^(′′) (x) =∫_0 ^∞ (1−cost)e^(−xt ) dt  =∫_0 ^∞  e^(−xt)  dt −∫_0 ^∞  e^(−xt)  cost dt  =[−(1/x)e^(−xt) ]_0 ^(+∞)  −Re(∫_0 ^∞  e^(−xt+it)  dt)  =(1/x) −Re(∫_0 ^∞  e^((−x+i)t)  dt)  ∫_0 ^∞  e^((−x+i)t) dt =[(1/(−x+i))e^((−x+i)t) ]_0 ^(+∞) =((−1)/(−x+i)) =(1/(x−i)) =((x+i)/(x^2  +1)) ⇒  ϕ^(′′) (x)=(1/x)−(x/(x^2  +1)) ⇒ϕ^′ (x)=lnx −(1/2)ln(x^2  +1) +λ ⇒  ϕ(x)=xlnx−x −(1/2)∫ ln(x^2  +1)dx +λx +α  ∫ ln(x^2 +1)dx =x ln(x^2  +1)−∫ x×((2x)/(x^2  +1))dx   =xln(x^2  +1)−2 ∫  ((x^2  +1−1)/(x^2  +1))dx  =xln(x^2  +1)−2x +2arctanx +c⇒  ϕ(x) =xlnx −x −(x/2)ln(x^2  +1) +x −arctanx +λx +c  ⇒ϕ(x)=xlnx −(x/2)ln(x^2  +1)−arctanx +λx +c  lim_(x→0) ϕ(x) =∫_0 ^∞  ((1−cost)/t^2 )dt  =_(by parts)   [−(1/t)(1−cost)]_0 ^∞   +∫_0 ^∞   (1/t)sint dt =(π/2) =c ⇒  ϕ(x)=xlnx −(x/2)ln(x^2  +1)−arctanx +λx +(π/2)  rest to find λ   .be continued...
L(1cosxx2)=0f(t)extdt=01costt2extdt(x>0)=φ(x)φ(x)=01costtextdtφ(x)=0(1cost)extdt=0extdt0extcostdt=[1xext]0+Re(0ext+itdt)=1xRe(0e(x+i)tdt)0e(x+i)tdt=[1x+ie(x+i)t]0+=1x+i=1xi=x+ix2+1φ(x)=1xxx2+1φ(x)=lnx12ln(x2+1)+λφ(x)=xlnxx12ln(x2+1)dx+λx+αln(x2+1)dx=xln(x2+1)x×2xx2+1dx=xln(x2+1)2x2+11x2+1dx=xln(x2+1)2x+2arctanx+cφ(x)=xlnxxx2ln(x2+1)+xarctanx+λx+cφ(x)=xlnxx2ln(x2+1)arctanx+λx+climx0φ(x)=01costt2dt=byparts[1t(1cost)]0+01tsintdt=π2=cφ(x)=xlnxx2ln(x2+1)arctanx+λx+π2resttofindλ.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *