find-L-1-cosx-x-2-with-L-lsplace-transform- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 88415 by abdomathmax last updated on 10/Apr/20 findL(1−cosxx2)withLlsplacetransform Commented by jagoll last updated on 10/Apr/20 L(1−cosx)=1−xx2+1=x2−x+1x2+1L(1−cosxx)=ddx[x2−x+1x2+1]=(2x−1)(x2+1)−2x(x2−x+1)(x2+1)2=2x3−x2+2x−1−2x3+2x2−2x(x2+1)2=x2−1(x2+1)2L(1−cosxx2)=ddx[x2−1(x2+1)2]=2x(x2+1)2−4x(x2+1)(x2−1)(x2+1)4=2x(x2+1){x2+1−2(x2−1)}(x2+1)4=2x(−x2+3)(x2+1)3=−2x3+6x(x2+1)3 Commented by mathmax by abdo last updated on 10/Apr/20 L(1−cosxx2)=∫0∞f(t)e−xtdt=∫0∞1−costt2e−xtdt(x>0)=φ(x)⇒φ′(x)=−∫0∞1−costte−xtdt⇒φ″(x)=∫0∞(1−cost)e−xtdt=∫0∞e−xtdt−∫0∞e−xtcostdt=[−1xe−xt]0+∞−Re(∫0∞e−xt+itdt)=1x−Re(∫0∞e(−x+i)tdt)∫0∞e(−x+i)tdt=[1−x+ie(−x+i)t]0+∞=−1−x+i=1x−i=x+ix2+1⇒φ″(x)=1x−xx2+1⇒φ′(x)=lnx−12ln(x2+1)+λ⇒φ(x)=xlnx−x−12∫ln(x2+1)dx+λx+α∫ln(x2+1)dx=xln(x2+1)−∫x×2xx2+1dx=xln(x2+1)−2∫x2+1−1x2+1dx=xln(x2+1)−2x+2arctanx+c⇒φ(x)=xlnx−x−x2ln(x2+1)+x−arctanx+λx+c⇒φ(x)=xlnx−x2ln(x2+1)−arctanx+λx+climx→0φ(x)=∫0∞1−costt2dt=byparts[−1t(1−cost)]0∞+∫0∞1tsintdt=π2=c⇒φ(x)=xlnx−x2ln(x2+1)−arctanx+λx+π2resttofindλ.becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-e-x-2-dx-Next Next post: find-approcimstive-value-of-pi-3-pi-2-x-sinx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.