Menu Close

find-L-cos-2-x-and-L-sin-2-x-L-is-laplace-transform-




Question Number 30476 by abdo imad last updated on 22/Feb/18
find L(cos^2 x) and L(sin^2 x) L is laplace transform.
$${find}\:{L}\left({cos}^{\mathrm{2}} {x}\right)\:{and}\:{L}\left({sin}^{\mathrm{2}} {x}\right)\:{L}\:{is}\:{laplace}\:{transform}. \\ $$
Answered by sma3l2996 last updated on 24/Feb/18
L(cos^2 x)=L(((cos(2x)+1)/2))=(1/2)(L(cos(2x))+L(1))  =(1/2)((s/(s^2 +2^2 ))+(1/s))  samething for  L(sin^2 (x))=(1/2)((1/s)−(2/(s^2 +2^2 )))
$${L}\left({cos}^{\mathrm{2}} {x}\right)={L}\left(\frac{{cos}\left(\mathrm{2}{x}\right)+\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({L}\left({cos}\left(\mathrm{2}{x}\right)\right)+{L}\left(\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{s}}{{s}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{{s}}\right) \\ $$$${samething}\:{for}\:\:{L}\left({sin}^{\mathrm{2}} \left({x}\right)\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{s}}−\frac{\mathrm{2}}{{s}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\right) \\ $$
Commented by sma3l2996 last updated on 24/Feb/18
L(sin^2 (x))=(1/2)((1/s)−(s/(s^2 +2^2 )))
$${L}\left({sin}^{\mathrm{2}} \left({x}\right)\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{s}}−\frac{{s}}{{s}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *