Menu Close

find-L-cos-wx-and-L-sin-wx-L-is-laplace-transform-




Question Number 37362 by math khazana by abdo last updated on 12/Jun/18
find L(cos(wx)) and L(sin(wx))  L is laplace transform  .
$${find}\:{L}\left({cos}\left({wx}\right)\right)\:{and}\:{L}\left({sin}\left({wx}\right)\right) \\ $$$${L}\:{is}\:{laplace}\:{transform}\:\:. \\ $$
Commented by math khazana by abdo last updated on 13/Jun/18
L(cos(wx)) =∫_0 ^∞   cos(wt) e^(−xt) dt   =Re(∫_0 ^∞   e^(iwt−xt) dt) but  ∫_0 ^∞   e^(iwt−xt) dt = ∫_0 ^∞    e^((iw−x)t) dt  =(1/(iw−x))[  e^((iw−x)t) ]_(t=0) ^∞  = ((−1)/(iw−x)) = (1/(x−iw))  = ((x+iw)/(x^2  +w^2 ))   ⇒ L(cos(wx))= (x/(x^2  +w^2 ))  L(si(wx)) =∫_0 ^∞   sin(wt)e^(−xt) dt  =Im(∫_0 ^∞   e^(iwt −xt) dt)  = (w/(x^2  +w^2 )) ⇒  L(sin(wx)) =(w/(x^2  +w^2 )) .
$${L}\left({cos}\left({wx}\right)\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{cos}\left({wt}\right)\:{e}^{−{xt}} {dt}\: \\ $$$$={Re}\left(\int_{\mathrm{0}} ^{\infty} \:\:{e}^{{iwt}−{xt}} {dt}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{{iwt}−{xt}} {dt}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{\left({iw}−{x}\right){t}} {dt} \\ $$$$=\frac{\mathrm{1}}{{iw}−{x}}\left[\:\:{e}^{\left({iw}−{x}\right){t}} \right]_{{t}=\mathrm{0}} ^{\infty} \:=\:\frac{−\mathrm{1}}{{iw}−{x}}\:=\:\frac{\mathrm{1}}{{x}−{iw}} \\ $$$$=\:\frac{{x}+{iw}}{{x}^{\mathrm{2}} \:+{w}^{\mathrm{2}} }\:\:\:\Rightarrow\:{L}\left({cos}\left({wx}\right)\right)=\:\frac{{x}}{{x}^{\mathrm{2}} \:+{w}^{\mathrm{2}} } \\ $$$${L}\left({si}\left({wx}\right)\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{sin}\left({wt}\right){e}^{−{xt}} {dt} \\ $$$$={Im}\left(\int_{\mathrm{0}} ^{\infty} \:\:{e}^{{iwt}\:−{xt}} {dt}\right)\:\:=\:\frac{{w}}{{x}^{\mathrm{2}} \:+{w}^{\mathrm{2}} }\:\Rightarrow \\ $$$${L}\left({sin}\left({wx}\right)\right)\:=\frac{{w}}{{x}^{\mathrm{2}} \:+{w}^{\mathrm{2}} }\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *