Menu Close

find-L-e-x-a-a-with-a-0-and-L-laplace-transfom-




Question Number 38728 by maxmathsup by imad last updated on 28/Jun/18
find L ( (e^(−(x/a)) /a))  with a≠0  and L laplace transfom.
$${find}\:{L}\:\left(\:\frac{{e}^{−\frac{{x}}{{a}}} }{{a}}\right)\:\:{with}\:{a}\neq\mathrm{0}\:\:{and}\:{L}\:{laplace}\:{transfom}. \\ $$
Commented by abdo mathsup 649 cc last updated on 29/Jun/18
L((1/a) e^(−(x/a)) )= ∫_0 ^∞   (1/a)e^(−(t/a))  e^(−xt) dt  =(1/a)∫_0 ^∞    e^((−x−(1/a))t) dt  =(1/a)  [ (1/(−x−(1/a))) e^((−x−(1/a))t) ]_0 ^(+∞)   =(1/a) (1/(x +(1/a))) = (1/(ax+1)) .
$${L}\left(\frac{\mathrm{1}}{{a}}\:{e}^{−\frac{{x}}{{a}}} \right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{a}}{e}^{−\frac{{t}}{{a}}} \:{e}^{−{xt}} {dt} \\ $$$$=\frac{\mathrm{1}}{{a}}\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{\left(−{x}−\frac{\mathrm{1}}{{a}}\right){t}} {dt} \\ $$$$=\frac{\mathrm{1}}{{a}}\:\:\left[\:\frac{\mathrm{1}}{−{x}−\frac{\mathrm{1}}{{a}}}\:{e}^{\left(−{x}−\frac{\mathrm{1}}{{a}}\right){t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\frac{\mathrm{1}}{{a}}\:\frac{\mathrm{1}}{{x}\:+\frac{\mathrm{1}}{{a}}}\:=\:\frac{\mathrm{1}}{{ax}+\mathrm{1}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *