Menu Close

find-Laplace-transform-t-3-cos-4t-




Question Number 88169 by jagoll last updated on 08/Apr/20
find Laplace transform   t^3 . cos  4t
$$\mathrm{find}\:\mathrm{Laplace}\:\mathrm{transform}\: \\ $$$$\mathrm{t}^{\mathrm{3}} .\:\mathrm{cos}\:\:\mathrm{4t} \\ $$
Commented by mathmax by abdo last updated on 08/Apr/20
L(x^3 cos(4x))=∫_0 ^∞  f(t) e^(−xt)  dt  =∫_0 ^∞ t^3  cos(4t)e^(−xt)  dt =Re(∫_0 ^∞  t^3 e^(i4t−xt)  dt)  ∫_0 ^∞ t^3  e^((−x+4i)t)  dt =_(bypsrts)    [(t^3 /(−x+4i)) e^((−x+4i)t) ]_0 ^∞ −(1/(−x+4i))∫_0 ^∞ 3t^2  e^((−x+4i)t) dt  =(3/(x−4i)) {  [(t^2 /(−x+4i)) e^((−x+4i)t) ]_0 ^∞ −(1/(−x+4i))∫_0 ^∞ 2t e^((−x+4i)t) dt}  =(6/((x−4i)^2 )) ∫_0 ^∞  t e^((−x+4i)t)  dt   =(6/((x−4i)^2 )){ [−(t/(−x+4i)) e^((−x+4i)t) ]_0 ^∞ −(1/(−x+4i))∫_0 ^∞  e^((−x+4i)t)  dt}  =(6/((x−4i)^3 ))[(1/(−x+4i)) e^((−x+4i)t) ]_0 ^∞  =(6/((x−4i)^4 )) =6((1/(x−4i)))^4   =6(((x+4i)/(x^2  +16)))^4  =(6/(x^2  +16))(x+4i)^2 (x+4i)^2   =(6/(x^2  +16))(x^2 +8ix −16)^2   =(6/(x^2  +16)){ (x^2  +8ix)^2 −32(x^2  +8ix)+16^2 }  =(6/(x^2  +16)){ x^4  +16ix^3 −64 x^2 −32x^2 −8.32ix +16^2 } ⇒  L(x^3 (4x)) =(6/(x^2  +16))( x^4 −96x^2  +16^2 )
$${L}\left({x}^{\mathrm{3}} {cos}\left(\mathrm{4}{x}\right)\right)=\int_{\mathrm{0}} ^{\infty} \:{f}\left({t}\right)\:{e}^{−{xt}} \:{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{3}} \:{cos}\left(\mathrm{4}{t}\right){e}^{−{xt}} \:{dt}\:={Re}\left(\int_{\mathrm{0}} ^{\infty} \:{t}^{\mathrm{3}} {e}^{{i}\mathrm{4}{t}−{xt}} \:{dt}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{3}} \:{e}^{\left(−{x}+\mathrm{4}{i}\right){t}} \:{dt}\:=_{{bypsrts}} \:\:\:\left[\frac{{t}^{\mathrm{3}} }{−{x}+\mathrm{4}{i}}\:{e}^{\left(−{x}+\mathrm{4}{i}\right){t}} \right]_{\mathrm{0}} ^{\infty} −\frac{\mathrm{1}}{−{x}+\mathrm{4}{i}}\int_{\mathrm{0}} ^{\infty} \mathrm{3}{t}^{\mathrm{2}} \:{e}^{\left(−{x}+\mathrm{4}{i}\right){t}} {dt} \\ $$$$=\frac{\mathrm{3}}{{x}−\mathrm{4}{i}}\:\left\{\:\:\left[\frac{{t}^{\mathrm{2}} }{−{x}+\mathrm{4}{i}}\:{e}^{\left(−{x}+\mathrm{4}{i}\right){t}} \right]_{\mathrm{0}} ^{\infty} −\frac{\mathrm{1}}{−{x}+\mathrm{4}{i}}\int_{\mathrm{0}} ^{\infty} \mathrm{2}{t}\:{e}^{\left(−{x}+\mathrm{4}{i}\right){t}} {dt}\right\} \\ $$$$=\frac{\mathrm{6}}{\left({x}−\mathrm{4}{i}\right)^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{\left(−{x}+\mathrm{4}{i}\right){t}} \:{dt}\: \\ $$$$=\frac{\mathrm{6}}{\left({x}−\mathrm{4}{i}\right)^{\mathrm{2}} }\left\{\:\left[−\frac{{t}}{−{x}+\mathrm{4}{i}}\:{e}^{\left(−{x}+\mathrm{4}{i}\right){t}} \right]_{\mathrm{0}} ^{\infty} −\frac{\mathrm{1}}{−{x}+\mathrm{4}{i}}\int_{\mathrm{0}} ^{\infty} \:{e}^{\left(−{x}+\mathrm{4}{i}\right){t}} \:{dt}\right\} \\ $$$$=\frac{\mathrm{6}}{\left({x}−\mathrm{4}{i}\right)^{\mathrm{3}} }\left[\frac{\mathrm{1}}{−{x}+\mathrm{4}{i}}\:{e}^{\left(−{x}+\mathrm{4}{i}\right){t}} \right]_{\mathrm{0}} ^{\infty} \:=\frac{\mathrm{6}}{\left({x}−\mathrm{4}{i}\right)^{\mathrm{4}} }\:=\mathrm{6}\left(\frac{\mathrm{1}}{{x}−\mathrm{4}{i}}\right)^{\mathrm{4}} \\ $$$$=\mathrm{6}\left(\frac{{x}+\mathrm{4}{i}}{{x}^{\mathrm{2}} \:+\mathrm{16}}\right)^{\mathrm{4}} \:=\frac{\mathrm{6}}{{x}^{\mathrm{2}} \:+\mathrm{16}}\left({x}+\mathrm{4}{i}\right)^{\mathrm{2}} \left({x}+\mathrm{4}{i}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{6}}{{x}^{\mathrm{2}} \:+\mathrm{16}}\left({x}^{\mathrm{2}} +\mathrm{8}{ix}\:−\mathrm{16}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{6}}{{x}^{\mathrm{2}} \:+\mathrm{16}}\left\{\:\left({x}^{\mathrm{2}} \:+\mathrm{8}{ix}\right)^{\mathrm{2}} −\mathrm{32}\left({x}^{\mathrm{2}} \:+\mathrm{8}{ix}\right)+\mathrm{16}^{\mathrm{2}} \right\} \\ $$$$=\frac{\mathrm{6}}{{x}^{\mathrm{2}} \:+\mathrm{16}}\left\{\:{x}^{\mathrm{4}} \:+\mathrm{16}{ix}^{\mathrm{3}} −\mathrm{64}\:{x}^{\mathrm{2}} −\mathrm{32}{x}^{\mathrm{2}} −\mathrm{8}.\mathrm{32}{ix}\:+\mathrm{16}^{\mathrm{2}} \right\}\:\Rightarrow \\ $$$${L}\left({x}^{\mathrm{3}} \left(\mathrm{4}{x}\right)\right)\:=\frac{\mathrm{6}}{{x}^{\mathrm{2}} \:+\mathrm{16}}\left(\:{x}^{\mathrm{4}} −\mathrm{96}{x}^{\mathrm{2}} \:+\mathrm{16}^{\mathrm{2}} \right) \\ $$
Commented by mathmax by abdo last updated on 09/Apr/20
forgive  L(x^3 cos(4x)) =((6(x^4 −96x^2  +16^2 ))/((x^2  +16)^4 ))
$${forgive}\:\:{L}\left({x}^{\mathrm{3}} {cos}\left(\mathrm{4}{x}\right)\right)\:=\frac{\mathrm{6}\left({x}^{\mathrm{4}} −\mathrm{96}{x}^{\mathrm{2}} \:+\mathrm{16}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+\mathrm{16}\right)^{\mathrm{4}} } \\ $$
Answered by jagoll last updated on 09/Apr/20
L(cos 4t) = (s/(s^2 +16))  L(t cos 4t) = −(d/ds)[(s/(s^2 +16))] = ((16−s^2 )/((s^2 +16)^2 ))  L(t^2  cos 4t) = −(d/ds)[((16−s^2 )/((s^2 +16)^2 ))]  = ((96s−2s^3 )/((s^2 +16)^3 ))  L(t^3 cos 4t) = −(d/ds)[((96s−2s^3 )/((s^2 +16)^3 ))]  = ((6(s^4 −96s^2 +256))/((s^2 +16)^4 ))
$$\mathrm{L}\left(\mathrm{cos}\:\mathrm{4t}\right)\:=\:\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}} +\mathrm{16}} \\ $$$$\mathrm{L}\left(\mathrm{t}\:\mathrm{cos}\:\mathrm{4t}\right)\:=\:−\frac{\mathrm{d}}{\mathrm{ds}}\left[\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}} +\mathrm{16}}\right]\:=\:\frac{\mathrm{16}−\mathrm{s}^{\mathrm{2}} }{\left(\mathrm{s}^{\mathrm{2}} +\mathrm{16}\right)^{\mathrm{2}} } \\ $$$$\mathrm{L}\left(\mathrm{t}^{\mathrm{2}} \:\mathrm{cos}\:\mathrm{4t}\right)\:=\:−\frac{\mathrm{d}}{\mathrm{ds}}\left[\frac{\mathrm{16}−\mathrm{s}^{\mathrm{2}} }{\left(\mathrm{s}^{\mathrm{2}} +\mathrm{16}\right)^{\mathrm{2}} }\right] \\ $$$$=\:\frac{\mathrm{96s}−\mathrm{2s}^{\mathrm{3}} }{\left(\mathrm{s}^{\mathrm{2}} +\mathrm{16}\right)^{\mathrm{3}} } \\ $$$$\mathrm{L}\left(\mathrm{t}^{\mathrm{3}} \mathrm{cos}\:\mathrm{4t}\right)\:=\:−\frac{\mathrm{d}}{\mathrm{ds}}\left[\frac{\mathrm{96s}−\mathrm{2s}^{\mathrm{3}} }{\left(\mathrm{s}^{\mathrm{2}} +\mathrm{16}\right)^{\mathrm{3}} }\right] \\ $$$$=\:\frac{\mathrm{6}\left(\mathrm{s}^{\mathrm{4}} −\mathrm{96s}^{\mathrm{2}} +\mathrm{256}\right)}{\left(\mathrm{s}^{\mathrm{2}} +\mathrm{16}\right)^{\mathrm{4}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *