Question Number 100243 by mhmd last updated on 25/Jun/20
$${find}\:{laplace}\:{transforme}\:{of}\:{the}\:{function}\: \\ $$$${f}\left({t}\right)=\left({a}−{bt}\right)^{\mathrm{2}} +{cos}^{\mathrm{2}} \left({wt}\right)? \\ $$$$ \\ $$$${help}\:{me}\:{sir}\:? \\ $$
Answered by mathmax by abdo last updated on 25/Jun/20
$$\mathrm{for}\:\mathrm{that}\:\mathrm{let}\:\mathrm{find}\:\mathrm{L}\left(\mathrm{1}\right)\:\:,\mathrm{L}\left(\mathrm{t}^{\mathrm{n}} \right)\:\mathrm{and}\:\mathrm{L}\left(\mathrm{cos}\left(\mathrm{wt}\right)\right)\:\mathrm{and}\:\mathrm{use}\:\mathrm{linearity}\:\mathrm{of}\:\mathrm{L} \\ $$$$\mathrm{L}\left(\mathrm{1}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{tx}} \mathrm{dx}\:=\left[−\frac{\mathrm{1}}{\mathrm{t}}\mathrm{e}^{−\mathrm{xt}} \right]_{\mathrm{0}} ^{\infty} \:=\frac{\mathrm{1}}{\mathrm{t}} \\ $$$$\mathrm{L}\left(\mathrm{t}^{\mathrm{n}} \right)\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{tx}} \:\mathrm{dx}\:\:=_{\mathrm{tx}=\mathrm{u}} \:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{u}^{\mathrm{n}} }{\mathrm{t}^{\mathrm{n}} }\mathrm{e}^{−\mathrm{u}} \:\frac{\mathrm{du}}{\mathrm{t}}\:=\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{n}+\mathrm{1}} }\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{u}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{u}} \:\mathrm{du} \\ $$$$=\frac{\Gamma\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{t}^{\mathrm{n}+\mathrm{1}} }\:=\frac{\mathrm{n}!}{\mathrm{t}^{\mathrm{n}+\mathrm{1}} } \\ $$$$\mathrm{L}\left(\mathrm{cos}\left(\mathrm{wt}\right)\right)\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{cos}\left(\mathrm{wx}\right)\mathrm{e}^{−\mathrm{tx}} \:\mathrm{dx}\:=\mathrm{Re}\left(\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{\mathrm{iwx}+\mathrm{tx}} \mathrm{dx}\right)\:\mathrm{and}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{\left(−\mathrm{t}+\mathrm{iw}\right)\mathrm{x}} \:\mathrm{dx}\:=\left[\frac{\mathrm{1}}{−\mathrm{t}+\mathrm{iw}}\mathrm{e}^{\left(−\mathrm{t}+\mathrm{iw}\right)\mathrm{x}} \right]_{\mathrm{x}=\mathrm{0}} ^{\infty} \:=−\frac{\mathrm{1}}{−\mathrm{t}+\mathrm{iw}}\:=\frac{\mathrm{1}}{\mathrm{t}−\mathrm{iw}}\:=\frac{\mathrm{t}+\mathrm{iw}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{w}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{L}\left(\mathrm{cos}\left(\mathrm{wt}\right)\right)\:=\frac{\mathrm{t}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{w}^{\mathrm{2}} }\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{t}\right)\:=\mathrm{a}^{\mathrm{2}} −\mathrm{2abt}\:+\mathrm{b}^{\mathrm{2}} \:\mathrm{t}^{\mathrm{2}} \:+\frac{\mathrm{1}+\mathrm{cos}\left(\mathrm{2wt}\right)}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{L}\left(\mathrm{f}\left(\mathrm{t}\right)\right)\:=\mathrm{a}^{\mathrm{2}} \:\mathrm{L}\left(\mathrm{1}\right)−\mathrm{2ab}\:\mathrm{L}\left(\mathrm{t}\right)+\mathrm{b}^{\mathrm{2}} \:\mathrm{L}\left(\mathrm{t}^{\mathrm{2}} \:\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{L}\left(\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{L}\left(\mathrm{cos}\left(\mathrm{2wt}\right)\right) \\ $$$$=\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{t}}−\frac{\mathrm{2ab}}{\mathrm{t}^{\mathrm{2}} }\:+\mathrm{b}^{\mathrm{2}} \frac{\mathrm{2}}{\mathrm{t}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{2t}}\:+\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{t}}{\mathrm{t}^{\mathrm{2}} +\mathrm{4w}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{L}\left(\mathrm{f}\left(\mathrm{t}\right)\right)\:=\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{t}}−\frac{\mathrm{2ab}}{\mathrm{t}^{\mathrm{2}} }\:+\frac{\mathrm{2b}^{\mathrm{2}} }{\mathrm{t}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{4t}}\:+\frac{\mathrm{t}}{\mathrm{2}\left(\mathrm{t}^{\mathrm{2}} \:+\mathrm{4w}^{\mathrm{2}} \right)} \\ $$
Commented by mathmax by abdo last updated on 25/Jun/20
$$\mathrm{L}\left(\mathrm{f}\left(\mathrm{t}\right)\right)\:=\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{t}}−\frac{\mathrm{2ab}}{\mathrm{t}^{\mathrm{2}} }\:+\frac{\mathrm{2b}^{\mathrm{2}} }{\mathrm{t}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{2t}}\:+\frac{\mathrm{t}}{\mathrm{2}\left(\mathrm{t}^{\mathrm{2}} \:+\mathrm{4w}^{\mathrm{2}} \right)} \\ $$
Answered by smridha last updated on 25/Jun/20
$$\boldsymbol{{f}}\left(\boldsymbol{{s}}\right)=\boldsymbol{{L}}\left[\left(\boldsymbol{{a}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{abt}}+\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{t}}^{\mathrm{2}} \right)\right]+\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{L}}\left[\left(\mathrm{1}+\boldsymbol{{cos}}\mathrm{2}\boldsymbol{{wt}}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:=\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{L}}\left[\mathrm{1}\right]−\mathrm{2}\boldsymbol{{abL}}\left[\boldsymbol{{t}}\right]+\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{L}}\left[\boldsymbol{{t}}^{\mathrm{2}} \right]+\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{L}}\left[\mathrm{1}\right]+\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{L}}\left[\boldsymbol{{cos}}\mathrm{2}\boldsymbol{{wt}}\right] \\ $$$$\:\:\:\:\:\:\:\:=\frac{\boldsymbol{{a}}^{\mathrm{2}} }{\boldsymbol{{s}}}−\mathrm{2}\boldsymbol{{ab}}.\frac{\mathrm{1}}{\boldsymbol{{s}}^{\mathrm{2}} }+\boldsymbol{{b}}^{\mathrm{2}} .\frac{\mathrm{2}}{\boldsymbol{{s}}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{s}}}+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\boldsymbol{{s}}}{\left(\boldsymbol{{s}}^{\mathrm{2}} +\mathrm{4}\boldsymbol{{w}}^{\mathrm{2}} \right)}. \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$