Menu Close

find-laurant-series-at-f-z-1-lnz-




Question Number 145052 by tabata last updated on 01/Jul/21
find laurant series at f(z)=(1/(lnz))????
findlaurantseriesatf(z)=1lnz????
Commented by tabata last updated on 01/Jul/21
?????
?????
Commented by Olaf_Thorendsen last updated on 03/Jul/21
li(z) = ∫(dz/(ln(z)))  Expansion about z = 1 :  li(z) = (1/2)(ln(z−1)−ln((1/(z−1))))  +γ+Σ_(k=0) ^∞ (((−1)^k )/((k+1)!))(1−z)^(k+1) Σ_(j=1) ^(k+1) ((B_j S_k ^((j−1)) )/j)  B_n  : nth Bernoulli number  S_n ^((m))  : signed Stirling number  of the first kind  ⇒ (1/(ln(z))) = (1/(z−1))−Σ_(k=0) ^∞ Σ_(j=1) ^(k+1) ((B_j S_k ^((j−1)) )/(k!j))(z−1)^k
li(z)=dzln(z)Expansionaboutz=1:li(z)=12(ln(z1)ln(1z1))+γ+k=0(1)k(k+1)!(1z)k+1k+1j=1BjSk(j1)jBn:nthBernoullinumberSn(m):signedStirlingnumberofthefirstkind1ln(z)=1z1k=0k+1j=1BjSk(j1)k!j(z1)k

Leave a Reply

Your email address will not be published. Required fields are marked *