find-laurent-series-f-z-1-z-2-z-1-0-lt-z-1-lt-1- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 148724 by Sozan last updated on 30/Jul/21 findlaurentseriesf(z)=1z2−z+1,0<∣z−1∣<1 Answered by mathmax by abdo last updated on 30/Jul/21 thewayofthiskindistousechangementz−1=y⇒f(z)=φ(y)=1(y+1)2−(y+1)+1=1y2+2y+1−y=1y2+y+1rootsofy2+y+1=0Δ=1−4=−3⇒z1=−1+i32=e2iπ3andz2=−1−i32=e−2iπ3⇒φ(y)=1(y−z1)(y−z2)=1z1−z2(1y−z1−1y−z2)=12i.32(1y−z1−1y−z2)wehave∣yz1∣=∣y∣<1∣yz2∣=∣y∣<1⇒φ(y)=1i3{1z1(yz1−1)−1z2(yz2−1)}=1i3(1z2×11−yz2−1z1×11−yz1)=e2iπ3i3∑n=0∞ynz2n−e−2iπ3i3∑n=0∞ynz1n=1i3e2iπ3∑n=0∞ei2nπ3yn−1i3e−2iπ3∑n=0∞e−i2nπ3yn=1i3∑n=0∞ei(2n+1)π3(z−1)n−1i3∑n=0∞e−i(2n+1)π3(z−1)n=1i3∑n=0∞2isin((2n+1)π3)(z−1)n⇒f(z)=23∑n=0∞sin((2n+1)π3)(z−1)n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-a-0-n-1-2a-1-x-2-n-2-4n-5-x-16-0-is-a-perfect-square-such-that-n-Z-what-is-the-value-of-x-n-Next Next post: Question-148739 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.