Menu Close

find-lim-n-1-n-1-n-2-1-1-n-2-n-1-2-




Question Number 30757 by abdo imad last updated on 25/Feb/18
find lim_(n→∞)   ((1/n) +(1/( (√(n^2  −1)))) +.... +(1/( (√(n^2  −(n−1)^2 )))) )
findlimn(1n+1n21+.+1n2(n1)2)
Commented by abdo imad last updated on 28/Feb/18
let put w_n = (1/n) +(1/( (√(n^2 −1)))) +...+(1/( (√(n^2  −(n−1)^2 ))))  w_n =(1/n)( 1+(1/( (√(1−(1^2 /n^2 ))))) +(1/( (√(1−(2^2 /n^2 ))))) +..... + (1/( (√(1−(((n−1)^2 )/n^2 ))))))  = (1/n)Σ_(k=0) ^(n−1)   (1/( (√(1 −((k/n))^2 )))) so w_n  is a Rieman sum and  lim_(n→∞)  w_n   = ∫_0 ^1     (dx/( (√(1−x^2 )))) =[arcsinx]_0 ^1  =(π/2) .
letputwn=1n+1n21++1n2(n1)2wn=1n(1+1112n2+1122n2+..+11(n1)2n2)=1nk=0n111(kn)2sownisaRiemansumandlimnwn=01dx1x2=[arcsinx]01=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *