Question Number 30757 by abdo imad last updated on 25/Feb/18
$${find}\:{lim}_{{n}\rightarrow\infty} \:\:\left(\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{\:\sqrt{{n}^{\mathrm{2}} \:−\mathrm{1}}}\:+….\:+\frac{\mathrm{1}}{\:\sqrt{{n}^{\mathrm{2}} \:−\left({n}−\mathrm{1}\right)^{\mathrm{2}} }}\:\right) \\ $$
Commented by abdo imad last updated on 28/Feb/18
$${let}\:{put}\:{w}_{{n}} =\:\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{\:\sqrt{{n}^{\mathrm{2}} −\mathrm{1}}}\:+…+\frac{\mathrm{1}}{\:\sqrt{{n}^{\mathrm{2}} \:−\left({n}−\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$${w}_{{n}} =\frac{\mathrm{1}}{{n}}\left(\:\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\frac{\mathrm{1}^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\frac{\mathrm{2}^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\:+…..\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\frac{\left({n}−\mathrm{1}\right)^{\mathrm{2}} }{{n}^{\mathrm{2}} }}}\right) \\ $$$$=\:\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:−\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} }}\:{so}\:{w}_{{n}} \:{is}\:{a}\:{Rieman}\:{sum}\:{and} \\ $$$${lim}_{{n}\rightarrow\infty} \:{w}_{{n}} \:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\left[{arcsinx}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\pi}{\mathrm{2}}\:. \\ $$