Menu Close

Find-lim-n-1-n-2-2-n-2-3-n-2-n-n-2-




Question Number 192453 by Spillover last updated on 18/May/23
Find     lim_(n→∞)  ((1/n^2 )+(2/n^2 )+(3/n^2 )+...(n/n^2 ))
$${Find}\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\frac{\mathrm{2}}{{n}^{\mathrm{2}} }+\frac{\mathrm{3}}{{n}^{\mathrm{2}} }+…\frac{{n}}{{n}^{\mathrm{2}} }\right) \\ $$
Answered by senestro last updated on 18/May/23
1/2
$$\mathrm{1}/\mathrm{2} \\ $$
Answered by AST last updated on 18/May/23
(1/n^2 )(((n(n+1))/2))=((n+1)/(2n))=(1/2)+(1/(2n))⇒lim_(n→∞) (Σ_(p=1 ) ^n (p/n^2 ))=(1/2)
$$\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right)=\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}{n}}\Rightarrow\underset{{n}\rightarrow\infty} {{lim}}\left(\underset{{p}=\mathrm{1}\:} {\overset{{n}} {\sum}}\frac{{p}}{{n}^{\mathrm{2}} }\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Spillover last updated on 19/May/23
great.
$${great}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *