Question Number 29450 by prof Abdo imad last updated on 08/Feb/18
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:^{{n}} \sqrt{\left({n}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} \right)\left({n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \right)….\left({n}^{\mathrm{2}} \:+{n}^{\left.\mathrm{2}\right)\:} .\right.} \\ $$
Commented by prof Abdo imad last updated on 23/Mar/18
$${let}\:{put}\:\:{A}_{{n}} \:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:\left(\:\prod_{{k}=\mathrm{1}} ^{{n}} \left({n}^{\mathrm{2}} \:+{k}^{\mathrm{2}} \right)\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$${A}_{{n}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:{n}^{\mathrm{2}{n}} \:\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\right)^{\frac{\mathrm{1}}{{n}}} =\left(\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{{n}}} \Rightarrow\right. \\ $$$${ln}\left({A}_{{n}} \right)=\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{ln}\left(\:\mathrm{1}+\:\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} \right)\rightarrow\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$$${but}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx}=\:\left[{xln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={ln}\left(\mathrm{2}\right)\:−\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={ln}\left(\mathrm{2}\right)\:−\mathrm{2}\:\:+\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$={ln}\left(\mathrm{2}\right)\:−\mathrm{2}\:\:+\:\mathrm{2}\:.\frac{\pi}{\mathrm{4}}\:=\:\frac{\pi}{\mathrm{2}}\:+{ln}\left(\mathrm{2}\right)\:−\mathrm{2} \\ $$$$\Rightarrow{lim}_{{n}\rightarrow\infty} \:{A}_{{n}} =\:{e}^{\frac{\pi}{\mathrm{2}}\:+{ln}\left(\mathrm{2}\right)−\mathrm{2}} \:=\:\frac{\mathrm{2}}{{e}^{\mathrm{2}} }\:{e}^{\frac{\pi}{\mathrm{2}}} \:\:. \\ $$