Menu Close

find-lim-n-1-n-2-n-n-2-1-2-n-2-2-2-n-2-n-2-




Question Number 29450 by prof Abdo imad last updated on 08/Feb/18
find lim_(n→+∞)   (1/n^2 )^n (√((n^2 +1^2 )(n^2 +2^2 )....(n^2  +n^(2) ) .))
findlimn+1n2n(n2+12)(n2+22).(n2+n2).
Commented by prof Abdo imad last updated on 23/Mar/18
let put  A_n  =(1/n^2 )  ( Π_(k=1) ^n (n^2  +k^2 ))^(1/n)   A_n = (1/n^2 )( n^(2n)  Π_(k=1) ^n (1+(k^2 /n^2 )))^(1/n) =( Π_(k=1) ^n  (1+(k^2 /n^2 ))^(1/n) ⇒  ln(A_n )=(1/n) Σ_(k=1) ^n  ln( 1+ ((k/n))^2 )→ ∫_0 ^1 ln(1+x^2 )dx  but  ∫_0 ^1  ln(1+x^2 )dx= [xln(1+x^2 )]_0 ^1  −∫_0 ^1   ((2x^2 )/(1+x^2 ))dx  =ln(2) −2 ∫_0 ^1   ((1+x^2 −1)/(1+x^2 ))dx  =ln(2) −2  +2 ∫_0 ^1   (dx/(1+x^2 ))  =ln(2) −2  + 2 .(π/4) = (π/2) +ln(2) −2  ⇒lim_(n→∞)  A_n = e^((π/2) +ln(2)−2)  = (2/e^2 ) e^(π/2)   .
letputAn=1n2(k=1n(n2+k2))1nAn=1n2(n2nk=1n(1+k2n2))1n=(k=1n(1+k2n2)1nln(An)=1nk=1nln(1+(kn)2)01ln(1+x2)dxbut01ln(1+x2)dx=[xln(1+x2)]01012x21+x2dx=ln(2)2011+x211+x2dx=ln(2)2+201dx1+x2=ln(2)2+2.π4=π2+ln(2)2limnAn=eπ2+ln(2)2=2e2eπ2.

Leave a Reply

Your email address will not be published. Required fields are marked *