Menu Close

find-lim-n-n-1-1-n-1-2-n-1-n-n-




Question Number 30755 by abdo imad last updated on 25/Feb/18
find   lim_(n→∞)  ^n (√((1+(1/n))(1+(2/n))...(1+(n/n)) ))
findlimnn(1+1n)(1+2n)(1+nn)
Commented by abdo imad last updated on 28/Feb/18
let put A_n =^n (√((1+(1/n))(1+(2/n))....(1+(n/n))))   we have  ln(A_n )= (1/n) ln(Π_(k=1) ^n (1+(k/n)))=(1/n) Σ_(k=1) ^n  ln(1+(k/n))so  ln(A_n ) is a Rieman sum and lim_(n→∞) ln(A_n )  = ∫_0 ^1  ln(1+x)dx= ∫_1 ^2  ln(t)dt=[tlnt −t]_1 ^2   =2ln2−2 +1=2ln2 −1 ⇒lim_(n→∞) A_n = e^(−1)  e^(ln(4))  =(4/e) .
letputAn=n(1+1n)(1+2n).(1+nn)wehaveln(An)=1nln(k=1n(1+kn))=1nk=1nln(1+kn)soln(An)isaRiemansumandlimnln(An)=01ln(1+x)dx=12ln(t)dt=[tlntt]12=2ln22+1=2ln21limnAn=e1eln(4)=4e.

Leave a Reply

Your email address will not be published. Required fields are marked *