Menu Close

Find-lim-n-n-1-2n-1-2-1-2n-3-2-1-4n-1-2-




Question Number 62571 by Joel122 last updated on 23/Jun/19
Find  lim_(n→∞)  (n((1/((2n+1)^2 )) + (1/((2n+3)^2 )) + ... + (1/((4n−1)^2 ))))
Findlimn(n(1(2n+1)2+1(2n+3)2++1(4n1)2))
Commented by Prithwish sen last updated on 23/Jun/19
lim_(n→∞) (1/n) [(l/((2+(1/n))^2 ))+(1/((2+(3/n))^2 )) +....+(1/((2+((2n−1)/n))^2 ))]  = lim_(n→∞) (1/n)Σ_(r=1) ^n (1/((2+((2r−1)/n))^2 ))  Putn=(1/h) n→∞ ⇒h→0   = lim_(h→0) h Σ_(r=1) ^n (1/((2+2rh)^2 ))  =∫_0 ^1  (dx/((2+2x)^2 ))    ∵nh=1=1−0  = (1/4)[−(1/((1+x)))]_0 ^1   =(1/4)[−(1/2)+1]  =(1/8)
limn1n[l(2+1n)2+1(2+3n)2+.+1(2+2n1n)2]=limn1nnr=11(2+2r1n)2Putn=1hnh0=limh0hnr=11(2+2rh)2=10dx(2+2x)2nh=1=10=14[1(1+x)]01=14[12+1]=18
Commented by Joel122 last updated on 23/Jun/19
The answer is (1/8)
Theansweris18
Commented by Tony Lin last updated on 23/Jun/19
=lim_(n→∞) ((1/2)×(2/n)((1/((2+(1/n))^2 ))+(1/((2+(3/n))^2 ))+...+(1/((4−(1/n))^2 ))))  =(1/2)∫_2 ^4 (1/x^2 )dx  =(1/2)[−(1/x)]_2 ^4   =−(1/8)+(1/4)  =(1/8)
=limn(12×2n(1(2+1n)2+1(2+3n)2++1(41n)2))=12241x2dx=12[1x]24=18+14=18
Commented by JDamian last updated on 23/Jun/19
Please, would you mind to explain how the sum  of a discrete sucession turns into an integral  in ℜ?
Please,wouldyoumindtoexplainhowthesumofadiscretesucessionturnsintoanintegralin?
Commented by Tony Lin last updated on 23/Jun/19
The definite integral of a continuous  function f(x) over the interval[a , b]  ,denoted by ∫_a ^b f(x)dx, is the limit of   Riemann sum as the number of  subdivisions approaches infinity  i.e ∫_a ^b f(x)dx=lim_(n→∞) Σ_(k=1) ^n △xf(x_k )  where △x=((b−a)/n) and x_k =a+k△x  now we have △x=(2/n) , means the  constant width of the rectangle,  and x_k  is the x value of the right   edge of the k^(th)  rectangle,from  x_1 =2+(1/n) to x_n = 4−(1/n) ,then f(x_k )  will give us the height of  each  rectangle ,and here f(x)=(1/x^2 ) , so the  area of the k^(th)  rectangle is  (2/n)×(1/((2+(2/n)k)^2 )) , and we sum that for  values of k from 1 to n  R(n)=lim_(n→∞) Σ_(k=1) ^n (1/((2+(2/n)k)^2 ))×(2/n)  now we can represent the actual  area as a limit:  ∫_(2 ) ^4 (1/x^2 )dx=lim_(n→∞) Σ_(k=1) ^n (1/((2+(2/n)k)^2 ))×(2/n)=(1/4)  but now it gives (1/n) not (2/n) ,  so it needs to be multiplied by (1/2)
Thedefiniteintegralofacontinuousfunctionf(x)overtheinterval[a,b],denotedbyabf(x)dx,isthelimitofRiemannsumasthenumberofsubdivisionsapproachesinfinityi.eabf(x)dx=limnnk=1xf(xk)wherex=banandxk=a+kxnowwehavex=2n,meanstheconstantwidthoftherectangle,andxkisthexvalueoftherightedgeofthekthrectangle,fromx1=2+1ntoxn=41n,thenf(xk)willgiveustheheightofeachrectangle,andheref(x)=1x2,sotheareaofthekthrectangleis2n×1(2+2nk)2,andwesumthatforvaluesofkfrom1tonR(n)=limnnk=11(2+2nk)2×2nnowwecanrepresenttheactualareaasalimit:241x2dx=limnnk=11(2+2nk)2×2n=14butnowitgives1nnot2n,soitneedstobemultipliedby12
Commented by Joel122 last updated on 24/Jun/19
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *