Menu Close

find-lim-n-n-2-n-1-




Question Number 29509 by abdo imad last updated on 09/Feb/18
find lim_(n→+ ∞)     ((n!)/2^(n−1) ) .
findlimn+n!2n1.
Commented by abdo imad last updated on 11/Feb/18
let use stirling formula  n! ∼ n^n  e^(−n)  (√(2πn))   ⇒  ((n!)/2^(n−1) )= n^n  2^(1−n)  e^(−n)  n^(1/2) (√(2π)) = e^(nln(n))  e^((1−n)ln(2)−n+(1/2))    (√(2π))  = (√(2π))  e^(nln(n)+(1−n)ln(2)−n+(1/2)) = (√(2π)) e^(n(lnn +((1/n)−1)ln2−1 +(1/(2n))))   and lim ((n!)/2^(n−1) )=lim_(n→∞)  (√(2π)) e^(n(ln(n)−1)) =+∞ .
letusestirlingformulan!nnen2πnn!2n1=nn21nenn122π=enln(n)e(1n)ln(2)n+122π=2πenln(n)+(1n)ln(2)n+12=2πen(lnn+(1n1)ln21+12n)andlimn!2n1=limn2πen(ln(n)1)=+.

Leave a Reply

Your email address will not be published. Required fields are marked *