Question Number 33168 by abdo imad last updated on 11/Apr/18
$${find}\:{lim}_{{n}\rightarrow\infty} \:\:\:\int_{{n}} ^{{n}+\mathrm{1}} \:\:\:\frac{\left({t}+{n}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{\:\sqrt{{t}}}\:{dt}\:. \\ $$
Commented by abdo imad last updated on 13/Apr/18
$$\left.\exists\xi\in\right]{n},{n}+\mathrm{1}\left[\:\:/{I}_{{n}} =\:\int_{{n}} ^{{n}+\mathrm{1}} \:\:\:\frac{\left({t}\:+{n}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{\:\sqrt{{t}}}{dt}\right. \\ $$$$=^{\mathrm{3}} \sqrt{\xi\:+{n}}\:\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{dt}}{\:\sqrt{{t}}}\:\:=\:^{\mathrm{3}} \sqrt{\xi\:+{n}}\:\left[\mathrm{2}\sqrt{\left.{t}\right]}\:_{{n}} ^{{n}+\mathrm{1}} \right. \\ $$$$=\:\mathrm{2}^{\mathrm{3}} \sqrt{{n}+\xi}\:\left(\sqrt{{n}+\mathrm{1}}\:−\sqrt{{n}}\:\right)\:=\:\frac{\mathrm{2}^{\mathrm{3}} \sqrt{{n}+\xi}}{\:\sqrt{{n}+\mathrm{1}}\:\:+\sqrt{{n}}} \\ $$$$\:\sim\:\:\frac{\mathrm{2}\left(\mathrm{2}{n}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }{\mathrm{2}\sqrt{{n}}}\:=^{\mathrm{3}} \sqrt{\mathrm{3}}\:\:{n}^{\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{2}}} \:=^{\mathrm{3}} \sqrt{\mathrm{2}}\:\:{n}^{−\frac{\mathrm{1}}{\mathrm{6}}} \:\rightarrow\mathrm{0}\left({n}\rightarrow\infty\right)\:{so} \\ $$$${lim}_{{n}\rightarrow\infty} \:\:{I}_{{n}} \:\:=\mathrm{0}\:\:. \\ $$