Menu Close

find-lim-n-n-p-sin-2-n-n-p-1-with0-lt-p-lt-1-




Question Number 34774 by abdo mathsup 649 cc last updated on 11/May/18
find lim_(n→+∞)   ((n^p  sin^2 (n!))/n^(p+1) )  with0<p<1 .
$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{n}^{{p}} \:{sin}^{\mathrm{2}} \left({n}!\right)}{{n}^{{p}+\mathrm{1}} }\:\:{with}\mathrm{0}<{p}<\mathrm{1}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 11/May/18
we have ((n^p  sin^2 (n!))/n^(p+1) ) = ((sin^2 (n!))/n) but  0≤sin^2 (n!)≤1 ⇒ 0≤ ((sin^2 (n!))/n)≤(1/n) →0(n→+∞)so  lim_(n→+∞)  ((n^p  sin^2 (n!))/n^(p+1) ) =0 .
$${we}\:{have}\:\frac{{n}^{{p}} \:{sin}^{\mathrm{2}} \left({n}!\right)}{{n}^{{p}+\mathrm{1}} }\:=\:\frac{{sin}^{\mathrm{2}} \left({n}!\right)}{{n}}\:{but} \\ $$$$\mathrm{0}\leqslant{sin}^{\mathrm{2}} \left({n}!\right)\leqslant\mathrm{1}\:\Rightarrow\:\mathrm{0}\leqslant\:\frac{{sin}^{\mathrm{2}} \left({n}!\right)}{{n}}\leqslant\frac{\mathrm{1}}{{n}}\:\rightarrow\mathrm{0}\left({n}\rightarrow+\infty\right){so} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\frac{{n}^{{p}} \:{sin}^{\mathrm{2}} \left({n}!\right)}{{n}^{{p}+\mathrm{1}} }\:=\mathrm{0}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/May/18
=((lim)/(n→+∞))((sin^2 (n!))/n)  let t=(1/n)when n→+∞  t→+0  ((lim)/(t→+0)) t.{sin^2 ((1/t))!}  =0×any value between +/−  1  =0  =
$$=\frac{{lim}}{{n}\rightarrow+\infty}\frac{{sin}^{\mathrm{2}} \left({n}!\right)}{{n}} \\ $$$${let}\:{t}=\frac{\mathrm{1}}{{n}}{when}\:{n}\rightarrow+\infty\:\:{t}\rightarrow+\mathrm{0} \\ $$$$\frac{{lim}}{{t}\rightarrow+\mathrm{0}}\:{t}.\left\{{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{t}}\right)!\right\} \\ $$$$=\mathrm{0}×{any}\:{value}\:{between}\:+/−\:\:\mathrm{1} \\ $$$$=\mathrm{0} \\ $$$$= \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *