Menu Close

find-lim-n-n-p-sin-2-n-n-p-1-with0-lt-p-lt-1-




Question Number 34774 by abdo mathsup 649 cc last updated on 11/May/18
find lim_(n→+∞)   ((n^p  sin^2 (n!))/n^(p+1) )  with0<p<1 .
findlimn+npsin2(n!)np+1with0<p<1.
Commented by abdo mathsup 649 cc last updated on 11/May/18
we have ((n^p  sin^2 (n!))/n^(p+1) ) = ((sin^2 (n!))/n) but  0≤sin^2 (n!)≤1 ⇒ 0≤ ((sin^2 (n!))/n)≤(1/n) →0(n→+∞)so  lim_(n→+∞)  ((n^p  sin^2 (n!))/n^(p+1) ) =0 .
wehavenpsin2(n!)np+1=sin2(n!)nbut0sin2(n!)10sin2(n!)n1n0(n+)solimn+npsin2(n!)np+1=0.
Answered by tanmay.chaudhury50@gmail.com last updated on 11/May/18
=((lim)/(n→+∞))((sin^2 (n!))/n)  let t=(1/n)when n→+∞  t→+0  ((lim)/(t→+0)) t.{sin^2 ((1/t))!}  =0×any value between +/−  1  =0  =
=limn+sin2(n!)nlett=1nwhenn+t+0limt+0t.{sin2(1t)!}=0×anyvaluebetween+/1=0=

Leave a Reply

Your email address will not be published. Required fields are marked *