Question Number 153571 by mathdanisur last updated on 08/Sep/21
$$\mathrm{Find}\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}n}\centerdot\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:-\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} ^{\mathrm{2}} \right)\:=\:? \\ $$$$\mathrm{where}\:\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} =\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} -\mathrm{k}+\mathrm{1}}\right) \\ $$
Answered by mnjuly1970 last updated on 08/Sep/21
$$\:\:{solution}.. \\ $$$$\:\:\:\:\:{a}_{\:{n}} =\:\underset{{k}=\mathrm{1}\:} {\overset{{n}} {\sum}}{arctan}\left(\frac{{k}\:−\left({k}−\mathrm{1}\right)}{\mathrm{1}+{k}\:\left({k}−\mathrm{1}\right)}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left\{{arctan}\left({k}\right)\:−\:{arctan}\left({k}−\mathrm{1}\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{arctan}\left({n}\:\right) \\ $$$$\:\:\:\:\:\:\therefore\:{lim}_{\:{n}\rightarrow\infty} \:{n}.\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:−{arctan}^{\mathrm{2}} \left({n}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:{lim}_{\:{n}\rightarrow\infty} {n}.\left(\frac{\pi}{\mathrm{2}}\:−{arctan}\left({n}\right)\right)\left(\frac{\pi}{\mathrm{2}}\:+{arctan}\left({n}\right)\right) \\ $$$$\:\:=\:{lim}_{{n}\rightarrow\infty} \:{n}.{arccot}\left({n}\right).{lim}_{{n}\rightarrow\infty} \left(\frac{\pi}{\mathrm{2}}\:+{arctan}\left({n}\right)\right) \\ $$$$\:\:\:\:=\pi{lim}_{\:{n}\rightarrow\infty} {n}.{arccot}\left({n}\right)=\:\pi.\mathrm{1}=\pi \\ $$$$ \\ $$
Commented by mathdanisur last updated on 08/Sep/21
$$\boldsymbol{\mathrm{S}}\mathrm{er},\:=\:\infty\:\:\mathrm{or}\:\:\pi.? \\ $$
Commented by mathdanisur last updated on 08/Sep/21
$$\boldsymbol{\mathrm{S}}\mathrm{er},\:\:\mathrm{arctan}\left(\mathrm{n}\right)\:\:\mathrm{or}\:\:\mathrm{arccot}\left(\mathrm{n}\right).? \\ $$
Commented by mnjuly1970 last updated on 08/Sep/21
$$\:\:\:\:\:{arccotan}\left({n}\right) \\ $$
Commented by mathdanisur last updated on 08/Sep/21
$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{thankyou}\:\mathrm{ser} \\ $$