Menu Close

find-lim-x-0-1-sinx-x-1-x-sinx-




Question Number 30553 by abdo imad last updated on 23/Feb/18
find  lim_(x→0) (1+sinx)^x  −(1+x)^(sinx) .
$${find}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \left(\mathrm{1}+{sinx}\right)^{{x}} \:−\left(\mathrm{1}+{x}\right)^{{sinx}} . \\ $$
Commented by Cheyboy last updated on 23/Feb/18
by direct subtitution  lim_(x→0)  (1+0)^0 −(1+0)^0 =0
$${by}\:{direct}\:{subtitution} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}+\mathrm{0}\right)^{\mathrm{0}} −\left(\mathrm{1}+\mathrm{0}\right)^{\mathrm{0}} =\mathrm{0} \\ $$
Commented by abdo imad last updated on 23/Feb/18
forgive the Q is find lim_(x→0) (((1+sinx)^x  −(1+x)^(sinx) )/x) .
$${forgive}\:{the}\:{Q}\:{is}\:{find}\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{\left(\mathrm{1}+{sinx}\right)^{{x}} \:−\left(\mathrm{1}+{x}\right)^{{sinx}} }{{x}}\:. \\ $$
Commented by rahul 19 last updated on 23/Feb/18
simply use hospital rule .
$$\mathrm{simply}\:\mathrm{use}\:\mathrm{hospital}\:\mathrm{rule}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *