find-lim-x-0-1-x-e-arcsinx-x-2- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 42785 by maxmathsup by imad last updated on 02/Sep/18 findlimx→01+x−earcsinxx2 Commented by maxmathsup by imad last updated on 30/Sep/18 letusehospitaltheoremu(x)=1+x−earcsinxandv(x)=x2⇒u(1)(x)=1−11−x2earcsinx⇒u(2)(x)=−{(1−x2)−12earcsinx}(1)=−{−12(−2x)(1−x2)−32earcsinx+(1−x2)−121−x2earcsinx}=−x(1−x2)−32earcsinx−11−x2earcsinx⇒limx→0u(2)(x)=−1alsowehavev(1)(x)=2xandv(2)(x)=2⇒limx→0v(2)(x)=2⇒limx→01+x−earcsinxx2=−12. Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18 t=sin−1xx→0t→0limt→01+sint−etsin2t(00)limt→0cost−etsin2t(00)limt→0−sint−et2cos2t=−0−12=−12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-lim-x-0-ln-e-x-2-x-1-x-Next Next post: calculate-lim-x-0-1-x-sinx-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.