Menu Close

find-lim-x-0-1-x-e-arcsinx-x-2-




Question Number 42785 by maxmathsup by imad last updated on 02/Sep/18
find lim_(x→0)   ((1+x −e^(arcsinx) )/x^2 )
findlimx01+xearcsinxx2
Commented by maxmathsup by imad last updated on 30/Sep/18
let use hospital theorem   u(x)=1+x −e^(arcsinx)   and  v(x)=x^2  ⇒ u^((1)) (x) =1 −(1/( (√(1−x^2 )))) e^(arcsinx)  ⇒  u^((2)) (x) =−{(1−x^2 )^(−(1/2))  e^(arcsinx) }^((1))   =−{−(1/2)(−2x) (1−x^2 )^(−(3/2))  e^(arcsinx)   +(((1−x^2 )^(−(1/2)) )/( (√(1−x^2 )))) e^(arcsinx) }  =−x (1−x^2 )^(−(3/2))  e^(arcsinx)   −(1/(1−x^2 )) e^(arcsinx)  ⇒lim_(x→0) u^((2)) (x)=−1  also we have v^((1)) (x)=2x and v^((2)) (x)=2 ⇒lim_(x→0) v^((2)) (x)=2 ⇒  lim_(x→0)      ((1+x−e^(arcsinx) )/x^2 ) =−(1/2) .
letusehospitaltheoremu(x)=1+xearcsinxandv(x)=x2u(1)(x)=111x2earcsinxu(2)(x)={(1x2)12earcsinx}(1)={12(2x)(1x2)32earcsinx+(1x2)121x2earcsinx}=x(1x2)32earcsinx11x2earcsinxlimx0u(2)(x)=1alsowehavev(1)(x)=2xandv(2)(x)=2limx0v(2)(x)=2limx01+xearcsinxx2=12.
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18
t=sin^(−1) x   x→0  t→0  lim_(t→0)  ((1+sint−e^t )/(sin^2 t)) ((0/0))  lim_(t→0)  ((cost−e^t )/(sin2t)) ((0/0))  lim_(t→0)  ((−sint−e^t )/(2cos2t))  =((−0−1)/2)=((−1)/2)
t=sin1xx0t0limt01+sintetsin2t(00)limt0costetsin2t(00)limt0sintet2cos2t=012=12

Leave a Reply

Your email address will not be published. Required fields are marked *