Menu Close

find-lim-x-0-1-x-ln-e-x-1-x-




Question Number 28892 by abdo imad last updated on 31/Jan/18
find lim_(x→0)   (1/x)ln(((e^x −1)/x)) .
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}}{{x}}{ln}\left(\frac{{e}^{{x}} −\mathrm{1}}{{x}}\right)\:. \\ $$
Answered by ajfour last updated on 01/Feb/18
lim_(x→0) (1/x)ln (((x+(x^2 /2)+(x^3 /6)+..)/x))  =lim_(x→0) ((ln (1+(x/2)+(x^2 /6)+..))/x)  =lim_(x→0) (((x/2)+(x^2 /6)+..)/x) =(1/2) .
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\mathrm{ln}\:\left(\frac{{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+..}{{x}}\right) \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\:\left(\mathrm{1}+\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{6}}+..\right)}{{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{6}}+..}{{x}}\:=\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$
Answered by chantriachheang last updated on 01/Feb/18
L=lim_(x→0) (1/x)ln(((e^x −1)/x))      (1)  take  x=−x  ⇒L=lim_(x→0) (−(1/x))ln((e^x −1)/(xe^x ))       (2)  (1)+(2)  ⇒2L=lim_(x→0) (1/x)[ln(((e^x −1)/x))−ln(((e^x −1)/(xe^x )))]      2L=lim_(x→0) (1/x)[ln(((e^x −1)/x))−ln(((e^x −1)/x))−ln(1/e^x )]  2L=lim_(x→0) ((1/x))(−lne^(−x) )=lne=1  ⇒L=(1/2)  :)
$$\boldsymbol{{L}}=\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\frac{\mathrm{1}}{\boldsymbol{{x}}}\boldsymbol{{ln}}\left(\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}{\boldsymbol{{x}}}\right)\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\boldsymbol{{take}}\:\:\boldsymbol{{x}}=−\boldsymbol{{x}} \\ $$$$\Rightarrow\boldsymbol{{L}}=\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\left(−\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\boldsymbol{{ln}}\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}{\boldsymbol{{xe}}^{\boldsymbol{{x}}} }\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right) \\ $$$$\Rightarrow\mathrm{2}\boldsymbol{{L}}=\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\frac{\mathrm{1}}{\boldsymbol{{x}}}\left[\boldsymbol{{ln}}\left(\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}{\boldsymbol{{x}}}\right)−\boldsymbol{{ln}}\left(\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}{\boldsymbol{{xe}}^{\boldsymbol{{x}}} }\right)\right]\:\:\:\: \\ $$$$\mathrm{2}\boldsymbol{{L}}=\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\frac{\mathrm{1}}{\boldsymbol{{x}}}\left[\boldsymbol{{ln}}\left(\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}{\boldsymbol{{x}}}\right)−\boldsymbol{{ln}}\left(\frac{\boldsymbol{{e}}^{\boldsymbol{{x}}} −\mathrm{1}}{\boldsymbol{{x}}}\right)−\boldsymbol{{ln}}\frac{\mathrm{1}}{\boldsymbol{{e}}^{\boldsymbol{{x}}} }\right] \\ $$$$\mathrm{2}\boldsymbol{{L}}=\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{lim}}}\left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\left(−\boldsymbol{{lne}}^{−\boldsymbol{{x}}} \right)=\boldsymbol{{lne}}=\mathrm{1} \\ $$$$\Rightarrow\boldsymbol{{L}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.:\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *