Menu Close

find-lim-x-0-1-x-ln-e-x-1-x-




Question Number 28892 by abdo imad last updated on 31/Jan/18
find lim_(x→0)   (1/x)ln(((e^x −1)/x)) .
findlimx01xln(ex1x).
Answered by ajfour last updated on 01/Feb/18
lim_(x→0) (1/x)ln (((x+(x^2 /2)+(x^3 /6)+..)/x))  =lim_(x→0) ((ln (1+(x/2)+(x^2 /6)+..))/x)  =lim_(x→0) (((x/2)+(x^2 /6)+..)/x) =(1/2) .
limx01xln(x+x22+x36+..x)=limx0ln(1+x2+x26+..)x=limx0x2+x26+..x=12.
Answered by chantriachheang last updated on 01/Feb/18
L=lim_(x→0) (1/x)ln(((e^x −1)/x))      (1)  take  x=−x  ⇒L=lim_(x→0) (−(1/x))ln((e^x −1)/(xe^x ))       (2)  (1)+(2)  ⇒2L=lim_(x→0) (1/x)[ln(((e^x −1)/x))−ln(((e^x −1)/(xe^x )))]      2L=lim_(x→0) (1/x)[ln(((e^x −1)/x))−ln(((e^x −1)/x))−ln(1/e^x )]  2L=lim_(x→0) ((1/x))(−lne^(−x) )=lne=1  ⇒L=(1/2)  :)
L=limx01xln(ex1x)(1)takex=xL=limx0(1x)lnex1xex(2)(1)+(2)2L=limx01x[ln(ex1x)ln(ex1xex)]2L=limx01x[ln(ex1x)ln(ex1x)ln1ex]2L=limx0(1x)(lnex)=lne=1L=12:)

Leave a Reply

Your email address will not be published. Required fields are marked *