Menu Close

find-lim-x-0-ln-1-sinx-sin-ln-1-x-x-2-




Question Number 33313 by abdo imad last updated on 14/Apr/18
find lim_(x→0)     ((ln(1+sinx) −sin(ln(1+x)))/x^2 )
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{ln}\left(\mathrm{1}+{sinx}\right)\:−{sin}\left({ln}\left(\mathrm{1}+{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$
Commented by abdo imad last updated on 17/Apr/18
let put u(x)=ln(1+sinx) −sin(ln(1+x))and v(x)=x^2   let use hospital theorem   lim_(x→0)   ((u(x))/(v(x))) =lim_(x→0)  ((u^(′′) (x))/(v^(′′) (x)))  but we have  u^′ (x)=((cosx)/(1+sinx)) −(1/(1+x)) cos(ln(1+x)) ⇒  u^(′′) (x) = ((−sinx(1+sinx) −cos^2 x)/((1+sinx)^2 )) −( ((−1)/((1+x)^2 )) cos(ln(1+x))  −(1/(1+x)) (1/(1+x)) sin(ln(1+x)) ⇒ lim_(x→0) u^(′′) (x)=−1  +1 =0  also we have v^′ (x) =2x ⇒ v^(′′) (x)=2 ⇒  lim_(x→0)   ((u(x))/(v(x))) =0
$${let}\:{put}\:{u}\left({x}\right)={ln}\left(\mathrm{1}+{sinx}\right)\:−{sin}\left({ln}\left(\mathrm{1}+{x}\right)\right){and}\:{v}\left({x}\right)={x}^{\mathrm{2}} \\ $$$${let}\:{use}\:{hospital}\:{theorem} \\ $$$$\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{u}\left({x}\right)}{{v}\left({x}\right)}\:={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{u}^{''} \left({x}\right)}{{v}^{''} \left({x}\right)}\:\:{but}\:{we}\:{have} \\ $$$${u}^{'} \left({x}\right)=\frac{{cosx}}{\mathrm{1}+{sinx}}\:−\frac{\mathrm{1}}{\mathrm{1}+{x}}\:{cos}\left({ln}\left(\mathrm{1}+{x}\right)\right)\:\Rightarrow \\ $$$${u}^{''} \left({x}\right)\:=\:\frac{−{sinx}\left(\mathrm{1}+{sinx}\right)\:−{cos}^{\mathrm{2}} {x}}{\left(\mathrm{1}+{sinx}\right)^{\mathrm{2}} }\:−\left(\:\frac{−\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:{cos}\left({ln}\left(\mathrm{1}+{x}\right)\right)\right. \\ $$$$−\frac{\mathrm{1}}{\mathrm{1}+{x}}\:\frac{\mathrm{1}}{\mathrm{1}+{x}}\:{sin}\left({ln}\left(\mathrm{1}+{x}\right)\right)\:\Rightarrow\:{lim}_{{x}\rightarrow\mathrm{0}} {u}^{''} \left({x}\right)=−\mathrm{1}\:\:+\mathrm{1}\:=\mathrm{0} \\ $$$${also}\:{we}\:{have}\:{v}^{'} \left({x}\right)\:=\mathrm{2}{x}\:\Rightarrow\:{v}^{''} \left({x}\right)=\mathrm{2}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{u}\left({x}\right)}{{v}\left({x}\right)}\:=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *