Menu Close

find-lim-x-0-ln-1-sinx-sin-ln-1-x-x-2-




Question Number 33313 by abdo imad last updated on 14/Apr/18
find lim_(x→0)     ((ln(1+sinx) −sin(ln(1+x)))/x^2 )
findlimx0ln(1+sinx)sin(ln(1+x))x2
Commented by abdo imad last updated on 17/Apr/18
let put u(x)=ln(1+sinx) −sin(ln(1+x))and v(x)=x^2   let use hospital theorem   lim_(x→0)   ((u(x))/(v(x))) =lim_(x→0)  ((u^(′′) (x))/(v^(′′) (x)))  but we have  u^′ (x)=((cosx)/(1+sinx)) −(1/(1+x)) cos(ln(1+x)) ⇒  u^(′′) (x) = ((−sinx(1+sinx) −cos^2 x)/((1+sinx)^2 )) −( ((−1)/((1+x)^2 )) cos(ln(1+x))  −(1/(1+x)) (1/(1+x)) sin(ln(1+x)) ⇒ lim_(x→0) u^(′′) (x)=−1  +1 =0  also we have v^′ (x) =2x ⇒ v^(′′) (x)=2 ⇒  lim_(x→0)   ((u(x))/(v(x))) =0
letputu(x)=ln(1+sinx)sin(ln(1+x))andv(x)=x2letusehospitaltheoremlimx0u(x)v(x)=limx0u(x)v(x)butwehaveu(x)=cosx1+sinx11+xcos(ln(1+x))u(x)=sinx(1+sinx)cos2x(1+sinx)2(1(1+x)2cos(ln(1+x))11+x11+xsin(ln(1+x))limx0u(x)=1+1=0alsowehavev(x)=2xv(x)=2limx0u(x)v(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *