Question Number 88896 by M±th+et£s last updated on 13/Apr/20
$${find}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{ln}\left({sin}\left(\mathrm{3}{x}\right)+{cos}\left(\mathrm{3}{x}\right)\right)}{{ln}\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)} \\ $$
Commented by abdomathmax last updated on 13/Apr/20
$${let}\:{f}\left({x}\right)=\frac{{ln}\left({sin}\left(\mathrm{3}{x}\right)+{cos}\left(\mathrm{3}{x}\right)\right)}{{ln}\left({sinx}+{cosx}\right)}\:\:{we}\:{have} \\ $$$${sin}\left(\mathrm{3}{x}\right)+{cos}\left(\mathrm{3}{x}\right)\sim\mathrm{3}{x}\:+\mathrm{1}−\frac{\left(\mathrm{3}{x}\right)^{\mathrm{2}} }{\mathrm{2}}\:=\mathrm{1}+\mathrm{3}{x}−\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${and}\:{ln}\left({sin}\left(\mathrm{3}{x}\right)+{cos}\left(\mathrm{3}{x}\right)\right)\sim{ln}\left(\mathrm{1}+\mathrm{3}{x}−\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\sim\mathrm{3}{x}−\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${sin}\left({x}\right)+{cosx}\:\sim\:{x}+\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$${ln}\left(\:{sinx}\:+{cosx}\right)\sim\:{ln}\left(\mathrm{1}+{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)\sim{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$${f}\left({x}\right)\sim\frac{\mathrm{3}{x}−\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}}{{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}\:\Rightarrow{f}\left({x}\right)\sim\frac{\mathrm{3}−\frac{\mathrm{9}{x}}{\mathrm{2}}}{\mathrm{1}−\frac{{x}}{\mathrm{2}}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\:{f}\left({x}\right)=\mathrm{3} \\ $$
Commented by M±th+et£s last updated on 13/Apr/20
$${nice}\:{solution}\:{thank}\:{you}\:{sir} \\ $$$$ \\ $$
Answered by TANMAY PANACEA. last updated on 13/Apr/20
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left\{{cos}\mathrm{3}{x}.\left(\mathrm{1}+{tan}\mathrm{3}{x}\right)\right\}}{{ln}\left\{{cosx}.\left(\mathrm{1}+{tanx}\right)\right\}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{lncos}\mathrm{3}{x}+{ln}\left(\mathrm{1}+{tan}\mathrm{3}{x}\right)}{{lncosx}+{ln}\left(\mathrm{1}+{tanx}\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{lncos}\mathrm{3}{x}+\frac{{ln}\left(\mathrm{1}+{tan}\mathrm{3}{x}\right)}{{tan}\mathrm{3}{x}}×\frac{{tan}\mathrm{3}{x}}{\mathrm{3}{x}}×\mathrm{3}{x}}{{lncosx}+\frac{{ln}\left(\mathrm{1}+{tanx}\right)}{{tanx}}×\frac{{tanx}}{{x}}×{x}} \\ $$$${now}\:{when}\:{x}\rightarrow\mathrm{0} \\ $$$${lncos}\mathrm{3}{x}\rightarrow\mathrm{0}\:\:{lncosx}\rightarrow\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{0}+\mathrm{1}×\mathrm{1}×\mathrm{3}{x}}{\mathrm{0}+\mathrm{1}×\mathrm{1}×{x}}=\mathrm{3} \\ $$$$ \\ $$$${let} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}} \\ $$
Commented by M±th+et£s last updated on 13/Apr/20
$${nice}\:{work}\:{thank}\:{yoi}\:{very}\:{much}\:{sir} \\ $$