Menu Close

find-lim-x-0-sin-shx-sh-sinx-x-




Question Number 35727 by abdo mathsup 649 cc last updated on 22/May/18
find lim_(x→0)      ((sin(shx) −sh(sinx))/x)
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{{sin}\left({shx}\right)\:−{sh}\left({sinx}\right)}{{x}} \\ $$
Commented by abdo mathsup 649 cc last updated on 23/May/18
its beter to use hospital theorem in this case  let put f(x)=sin(shx) −sh(sinx) and  g(x)=x we have  f^′ (x) = ch(x)cos(shx) −cos(x) ch(sinx) ⇒  lim_(x→0)  f(x) = 1 −1 =0  g^′ (x) =1  so  lim_(x→0)  ((sin(shx) −sh(sinx))/x) =0
$${its}\:{beter}\:{to}\:{use}\:{hospital}\:{theorem}\:{in}\:{this}\:{case} \\ $$$${let}\:{put}\:{f}\left({x}\right)={sin}\left({shx}\right)\:−{sh}\left({sinx}\right)\:{and} \\ $$$${g}\left({x}\right)={x}\:{we}\:{have} \\ $$$${f}^{'} \left({x}\right)\:=\:{ch}\left({x}\right){cos}\left({shx}\right)\:−{cos}\left({x}\right)\:{ch}\left({sinx}\right)\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right)\:=\:\mathrm{1}\:−\mathrm{1}\:=\mathrm{0} \\ $$$${g}^{'} \left({x}\right)\:=\mathrm{1}\:\:{so}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{sin}\left({shx}\right)\:−{sh}\left({sinx}\right)}{{x}}\:=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *