Menu Close

find-lim-x-0-x-1-2x-1-tarctan-t-2-1-1-1-t-2-2-dt-




Question Number 48177 by Abdo msup. last updated on 20/Nov/18
find lim_(x→0)    ∫_(x+1) ^(2x+1)    ((tarctan(t^2 +1))/(1+(1+t^2 )^2 ))dt
findlimx0x+12x+1tarctan(t2+1)1+(1+t2)2dt
Commented by kaivan.ahmadi last updated on 21/Nov/18
it is zero
itiszero
Commented by Abdo msup. last updated on 21/Nov/18
let A(x)=∫_(x+1) ^(2x+1)   (t/(1+(1+t^2 )^2 )) arctan(t^2 +1)dt by parts  u^′ =(t/(1+(1+t^2 )^2 )) and v=arctan(t^2  +1)⇒  A(x)=[(1/2)arctan(1+t^2 ).arctan(1+t^2 )]_(x+1) ^(2x+1)   −∫_(x+1) ^(2x+1)  (1/2)arctan(1+t^2 ) ((2t)/(1+(1+t^2 )^2 ))dt  =(1/2)( arctan^2 (1+(2x+1)^2 )−arctan(1+(x+1)^2 ))  −A(x) ⇒  A(x)=(1/4){ arctan^2 (1+(2x+1)^2 )−arctan(1+(x+1)^2 )}⇒  lim_(x→0) A(x)=(1/4){arctan^2 (2)−arctan^2 (2)} =0.
letA(x)=x+12x+1t1+(1+t2)2arctan(t2+1)dtbypartsu=t1+(1+t2)2andv=arctan(t2+1)A(x)=[12arctan(1+t2).arctan(1+t2)]x+12x+1x+12x+112arctan(1+t2)2t1+(1+t2)2dt=12(arctan2(1+(2x+1)2)arctan(1+(x+1)2))A(x)A(x)=14{arctan2(1+(2x+1)2)arctan(1+(x+1)2)}limx0A(x)=14{arctan2(2)arctan2(2)}=0.

Leave a Reply

Your email address will not be published. Required fields are marked *