find-lim-x-0-x-1-2x-1-tarctan-t-2-1-1-1-t-2-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 48177 by Abdo msup. last updated on 20/Nov/18 findlimx→0∫x+12x+1tarctan(t2+1)1+(1+t2)2dt Commented by kaivan.ahmadi last updated on 21/Nov/18 itiszero Commented by Abdo msup. last updated on 21/Nov/18 letA(x)=∫x+12x+1t1+(1+t2)2arctan(t2+1)dtbypartsu′=t1+(1+t2)2andv=arctan(t2+1)⇒A(x)=[12arctan(1+t2).arctan(1+t2)]x+12x+1−∫x+12x+112arctan(1+t2)2t1+(1+t2)2dt=12(arctan2(1+(2x+1)2)−arctan(1+(x+1)2))−A(x)⇒A(x)=14{arctan2(1+(2x+1)2)−arctan(1+(x+1)2)}⇒limx→0A(x)=14{arctan2(2)−arctan2(2)}=0. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: you-have-2-identical-mathematics-books-2-identical-physics-books-2-identical-chemistry-books-2-identical-biology-books-and-2-geography-books-in-how-many-ways-can-you-compile-these-books-such-that-Next Next post: Question-113714 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.