Menu Close

find-lim-x-0-x-1-x-and-lim-x-0-x-2-1-x-is-the-greatest-integr-inferior-or-equal-to-




Question Number 29156 by abdo imad last updated on 04/Feb/18
find lim_(x→0^+ )    x[(1/x)]  and  lim_(x→0^+ )     x^2  [ (1/x)]  .  [α] is the greatest integr inferior or equal to α.
$${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{x}\left[\frac{\mathrm{1}}{{x}}\right]\:\:{and}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:{x}^{\mathrm{2}} \:\left[\:\frac{\mathrm{1}}{{x}}\right]\:\:. \\ $$$$\left[\alpha\right]\:{is}\:{the}\:{greatest}\:{integr}\:{inferior}\:{or}\:{equal}\:{to}\:\alpha. \\ $$
Commented by abdo imad last updated on 09/Feb/18
 we have    [t]≤t<[t]+1⇒  [(1/x)]≤ (1/x)<[(1/x)]+1  ⇒ ∀x>0    x[ (1/x)]≤1 <x[(1/x)]+x⇒0≤1−x[(1/x)]<x  but lim_(x→0^+ )   x=0 ⇒ lim_(x→0^+ )  x[(1/x)]=1.
$$\:{we}\:{have}\:\:\:\:\left[{t}\right]\leqslant{t}<\left[{t}\right]+\mathrm{1}\Rightarrow\:\:\left[\frac{\mathrm{1}}{{x}}\right]\leqslant\:\frac{\mathrm{1}}{{x}}<\left[\frac{\mathrm{1}}{{x}}\right]+\mathrm{1} \\ $$$$\Rightarrow\:\forall{x}>\mathrm{0}\:\:\:\:{x}\left[\:\frac{\mathrm{1}}{{x}}\right]\leqslant\mathrm{1}\:<{x}\left[\frac{\mathrm{1}}{{x}}\right]+{x}\Rightarrow\mathrm{0}\leqslant\mathrm{1}−{x}\left[\frac{\mathrm{1}}{{x}}\right]<{x} \\ $$$${but}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:{x}=\mathrm{0}\:\Rightarrow\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:{x}\left[\frac{\mathrm{1}}{{x}}\right]=\mathrm{1}. \\ $$
Commented by abdo imad last updated on 09/Feb/18
for x>0 wehave 0≤ 1−x[(1/x)]<x⇒0≤x −x^2 [(1/x)]<x^2   ⇒ −x≤ −x^2  [(1/x)]< x^2 −x ⇒ x−x^2 < x^2 [(1/x)]≤x but  lim_(x→0) (x−x^2 )=lim_(x→0) x =0 ⇒ lim_(x→0) x^2 [(1/x)]=0
$${for}\:{x}>\mathrm{0}\:{wehave}\:\mathrm{0}\leqslant\:\mathrm{1}−{x}\left[\frac{\mathrm{1}}{{x}}\right]<{x}\Rightarrow\mathrm{0}\leqslant{x}\:−{x}^{\mathrm{2}} \left[\frac{\mathrm{1}}{{x}}\right]<{x}^{\mathrm{2}} \\ $$$$\Rightarrow\:−{x}\leqslant\:−{x}^{\mathrm{2}} \:\left[\frac{\mathrm{1}}{{x}}\right]<\:{x}^{\mathrm{2}} −{x}\:\Rightarrow\:{x}−{x}^{\mathrm{2}} <\:{x}^{\mathrm{2}} \left[\frac{\mathrm{1}}{{x}}\right]\leqslant{x}\:{but} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \left({x}−{x}^{\mathrm{2}} \right)={lim}_{{x}\rightarrow\mathrm{0}} {x}\:=\mathrm{0}\:\Rightarrow\:{lim}_{{x}\rightarrow\mathrm{0}} {x}^{\mathrm{2}} \left[\frac{\mathrm{1}}{{x}}\right]=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *