Menu Close

find-lim-x-0-x-1-x-and-lim-x-0-x-2-1-x-is-the-greatest-integr-inferior-or-equal-to-




Question Number 29156 by abdo imad last updated on 04/Feb/18
find lim_(x→0^+ )    x[(1/x)]  and  lim_(x→0^+ )     x^2  [ (1/x)]  .  [α] is the greatest integr inferior or equal to α.
findlimx0+x[1x]andlimx0+x2[1x].[α]isthegreatestintegrinferiororequaltoα.
Commented by abdo imad last updated on 09/Feb/18
 we have    [t]≤t<[t]+1⇒  [(1/x)]≤ (1/x)<[(1/x)]+1  ⇒ ∀x>0    x[ (1/x)]≤1 <x[(1/x)]+x⇒0≤1−x[(1/x)]<x  but lim_(x→0^+ )   x=0 ⇒ lim_(x→0^+ )  x[(1/x)]=1.
wehave[t]t<[t]+1[1x]1x<[1x]+1x>0x[1x]1<x[1x]+x01x[1x]<xbutlimx0+x=0limx0+x[1x]=1.
Commented by abdo imad last updated on 09/Feb/18
for x>0 wehave 0≤ 1−x[(1/x)]<x⇒0≤x −x^2 [(1/x)]<x^2   ⇒ −x≤ −x^2  [(1/x)]< x^2 −x ⇒ x−x^2 < x^2 [(1/x)]≤x but  lim_(x→0) (x−x^2 )=lim_(x→0) x =0 ⇒ lim_(x→0) x^2 [(1/x)]=0
forx>0wehave01x[1x]<x0xx2[1x]<x2xx2[1x]<x2xxx2<x2[1x]xbutlimx0(xx2)=limx0x=0limx0x2[1x]=0

Leave a Reply

Your email address will not be published. Required fields are marked *