Menu Close

find-lim-x-0-x-e-lnx-




Question Number 32990 by abdo imad last updated on 09/Apr/18
  find lim_(x→0^+ )   x e^(−lnx)   .
findlimx0+xelnx.
Commented by prof Abdo imad last updated on 09/Apr/18
the ch. lnx =−t give  lim_(x→0^+ )    x e^(−lnx)   =lim_(t→+∞ )   e^(−t)  .e^t   = e^0  =1
thech.lnx=tgivelimx0+xelnx=limt+et.et=e0=1
Answered by kyle_TW last updated on 09/Apr/18
lim_(x→0^+ ) x∙(1/e^(lnx) ) =lim_(x→0^+ ) x∙(1/x) = 1
limxx0+1elnx=limxx0+1x=1

Leave a Reply

Your email address will not be published. Required fields are marked *