Question Number 29158 by abdo imad last updated on 04/Feb/18
$${find}\:{lim}_{{x}\rightarrow\mathrm{1}} \frac{\sqrt{\mathrm{3}+\sqrt{\mathrm{2}{x}−\mathrm{1}}}\:−\mathrm{2}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{3}{x}+\mathrm{1}}}\:\:−\sqrt{{x}+\mathrm{3}}}\:\:. \\ $$
Commented by abdo imad last updated on 09/Feb/18
$${in}\:{this}\:{case}\:{its}\:{better}\:{to}\:{use}\:{hospital}\:{theorem}\:{let}\:{put} \\ $$$${u}\left({x}\right)=\sqrt{\mathrm{3}+\sqrt{\mathrm{2}{x}−\mathrm{1}}}\:−\mathrm{2}\:{and}\:{v}\left({x}\right)=\sqrt{\mathrm{2}+\sqrt{\mathrm{3}{x}+\mathrm{1}}}\:\:−\sqrt{{x}+\mathrm{3}} \\ $$$${u}^{'} \left({x}\right)=\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{x}−\mathrm{1}}}}{\mathrm{2}\sqrt{\mathrm{3}+\sqrt{\mathrm{2}{x}−\mathrm{1}}}}\:\Rightarrow\:{u}^{'} \left(\mathrm{1}\right)=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${v}^{'} \left({x}\right)=\:\frac{\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{3}{x}+\mathrm{1}}}}{\mathrm{2}\sqrt{\mathrm{2}+\sqrt{\mathrm{3}{x}+\mathrm{1}}}}\:−\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}+\mathrm{3}}}\Rightarrow{v}^{'} \left(\mathrm{1}\right)=\frac{\frac{\mathrm{3}}{\mathrm{4}}}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{16}}−\frac{\mathrm{4}}{\mathrm{16}}=−\frac{\mathrm{1}}{\mathrm{16}}\:\:{so} \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\frac{{u}\left({x}\right)}{{v}\left({x}\right)}=\frac{\mathrm{1}}{\mathrm{4}}×\left(−\mathrm{16}\right)=−\mathrm{4}\:. \\ $$$$ \\ $$