Menu Close

find-lim-x-1-x-x-2-lnt-t-1-2-dt-




Question Number 97990 by abdomathmax last updated on 10/Jun/20
find lim_(x→1^+ )   ∫_x ^x^2    ((lnt)/((t−1)^2 ))dt
$$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\:\int_{\mathrm{x}} ^{\mathrm{x}^{\mathrm{2}} } \:\:\frac{\mathrm{lnt}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt} \\ $$
Answered by maths mind last updated on 11/Jun/20
t−1=u  ⇔S(x)∫_(x−1) ^(x^2 −1) ((ln(1+u))/u^2 )du...u∈[0,+∞[  u−(u^2 /2)≤ln(1+u)≤u  proof     (1/(1+u))≤1⇒ln(1+u)≤u  (1/(1+u))+u−1=(u^2 /(1+u))≥0  ∫(du/(1+u))≥∫(1−u)du=u−(u^2 /2)  ⇒∫_(x−1) ^(x^2 −1) (1/u^2 )(u−(u^2 /2))≤∫_(x−1) ^(x^2 −1) ((ln(1+u))/u^2 )du≤∫_(x−1) ^(x^2 −1) (u/u^2 )du  ⇔ln(((x^2 −1)/(x−1)))−(1/2)(x^2 −x)≤S(x)≤ln(((x^2 −1)/(x+1)))  x→1^+   ⇒ln(2)≤lim_(x→1^+ ) S(x)≤ln(2)  ⇔lim_(x→1^+ ) S(x)=ln(2)
$${t}−\mathrm{1}={u} \\ $$$$\Leftrightarrow{S}\left({x}\right)\int_{{x}−\mathrm{1}} ^{{x}^{\mathrm{2}} −\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{u}\right)}{{u}^{\mathrm{2}} }{du}…{u}\in\left[\mathrm{0},+\infty\left[\right.\right. \\ $$$${u}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\leqslant{ln}\left(\mathrm{1}+{u}\right)\leqslant{u} \\ $$$${proof}\:\:\: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{u}}\leqslant\mathrm{1}\Rightarrow{ln}\left(\mathrm{1}+{u}\right)\leqslant{u} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{u}}+{u}−\mathrm{1}=\frac{{u}^{\mathrm{2}} }{\mathrm{1}+{u}}\geqslant\mathrm{0} \\ $$$$\int\frac{{du}}{\mathrm{1}+{u}}\geqslant\int\left(\mathrm{1}−{u}\right){du}={u}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\int_{{x}−\mathrm{1}} ^{{x}^{\mathrm{2}} −\mathrm{1}} \frac{\mathrm{1}}{{u}^{\mathrm{2}} }\left({u}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\right)\leqslant\int_{{x}−\mathrm{1}} ^{{x}^{\mathrm{2}} −\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{u}\right)}{{u}^{\mathrm{2}} }{du}\leqslant\int_{{x}−\mathrm{1}} ^{{x}^{\mathrm{2}} −\mathrm{1}} \frac{{u}}{{u}^{\mathrm{2}} }{du} \\ $$$$\Leftrightarrow{ln}\left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\boldsymbol{{x}}−\mathrm{1}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{x}}\right)\leqslant{S}\left({x}\right)\leqslant{ln}\left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}\right) \\ $$$${x}\rightarrow\mathrm{1}^{+} \\ $$$$\Rightarrow{ln}\left(\mathrm{2}\right)\leqslant\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}{S}\left({x}\right)\leqslant{ln}\left(\mathrm{2}\right) \\ $$$$\Leftrightarrow\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}{S}\left({x}\right)={ln}\left(\mathrm{2}\right) \\ $$
Commented by mathmax by abdo last updated on 12/Jun/20
thankx sir.
$$\mathrm{thankx}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *