Menu Close

find-lim-x-gt-0-e-x-x-1-x-2-




Question Number 27787 by abdo imad last updated on 14/Jan/18
find  lim_(x−>0) ((e^x   −x−1)/x^2 ) .
$${find}\:\:{lim}_{{x}−>\mathrm{0}} \frac{{e}^{{x}} \:\:−{x}−\mathrm{1}}{{x}^{\mathrm{2}} }\:. \\ $$
Answered by prakash jain last updated on 14/Jan/18
e^x =1+x+(x^2 /(2!))+...  ((e^x −x−1)/x^2 )=(1/(2!))+Σ_(i=1) ^∞ (x^i /((i+2)!))  lim_(x→0) (..)=(1/2)
$${e}^{{x}} =\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+… \\ $$$$\frac{{e}^{{x}} −{x}−\mathrm{1}}{{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}!}+\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{i}} }{\left({i}+\mathrm{2}\right)!} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(..\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *