Menu Close

find-lim-x-pi-2-sinx-ln-x-pi-2-




Question Number 109191 by abdomsup last updated on 21/Aug/20
find  lim_(x→(π/2))    (sinx)^(ln∣x−(π/2)∣)
findlimxπ2(sinx)lnxπ2
Commented by bemath last updated on 22/Aug/20
set x = (π/2)+ z  L= lim_(z→0) (sin ((π/2)+z))^(ln ∣z∣) =lim_(z→0)  (cos z)^(ln ∣z∣)   ln L = lim_(z→0)  ln ∣z∣ (cos z)  ln L = lim_(z→0) ((cos z)/(1/(ln z))) = lim_(z→0)  ((−sin z)/([((−(1/z))/(ln^2 (z)))]))  ln L=lim_(z→0)  sin z .((ln^2 z)/(1/z))=lim_(z→0)  z.sin z.ln^2  z  ln L = 0 ⇒ L = e^0  = 1
setx=π2+zL=limz0(sin(π2+z))lnz=limz0(cosz)lnzlnL=limz0lnz(cosz)lnL=limz0cosz1lnz=limz0sinz[1zln2(z)]lnL=limz0sinz.ln2z1z=limz0z.sinz.ln2zlnL=0L=e0=1
Answered by mathmax by abdo last updated on 23/Aug/20
f(x) =(sinx)^(ln∣x−(π/2)∣)  ⇒f(x) =e^(ln∣x−(π/2)∣ln(sinx))  changement x−(π/2)=t  give f(x) =g(t) =e^(ln∣t∣ ln(sin((π/2)+t)))  =e^(ln∣t∣ln(cost))   (x→(π/2) ⇒ t→0  ) we have ln(cost) =ln(cos∣t∣) ∼ln(1−((∣t∣^2 )/2)) ⇒  ∼−((∣t∣^2 )/2) ⇒ln∣t∣ln(cost) ∼−ln∣t∣ ((∣t∣^2 )/2) →0 (t→0) ⇒  lim_(t→0) g(t) =1 =lim_(x→(π/2))  f(x)
f(x)=(sinx)lnxπ2f(x)=elnxπ2ln(sinx)changementxπ2=tgivef(x)=g(t)=elntln(sin(π2+t))=elntln(cost)(xπ2t0)wehaveln(cost)=ln(cost)ln(1t22)t22lntln(cost)lntt220(t0)limt0g(t)=1=limxπ2f(x)

Leave a Reply

Your email address will not be published. Required fields are marked *