Menu Close

Find-limit-lim-x-x-x-2-1-x-and-lim-x-x-x-2-1-x-




Question Number 100920 by ajfour last updated on 29/Jun/20
Find limit      lim_(x→+∞) x((√(x^2 +1))−x)   and     lim_(x→−∞) x((√(x^2 +1))−x)  .
Findlimitlimx+x(x2+1x)andlimxx(x2+1x).
Commented by bramlex last updated on 29/Jun/20
lim_(x→+∞)  x(x(√(1+(1/x^2 )))−x)   set (1/x) = z ,z→0  lim_(z→0)  (1/z)((1/z)(√(1+z^2 ))−(1/z)) =  lim_(z→0)  (((√(1+z^2 )) −1)/z^2 ) = lim_(z→0)  (((1+(z^2 /2))−1)/z^2 )  = (1/2) ★
limx+x(x1+1x2x)set1x=z,z0limz01z(1z1+z21z)=limz01+z21z2=limz0(1+z22)1z2=12
Commented by bramlex last updated on 29/Jun/20
lim_(x→−∞)  x((√(x^2 +1))−x)=  lim_(x→−∞) x(−x(√(1+(1/x^2 )))−x)=  lim_(x→−∞) x(−x(√(1+((1/(−x)))^2 ))−x)=  lim_(x→−∞) −x^2 ((√(1+(−(1/x))^2 ))+1)  set (1/(−x)) = q , q→0  lim_(q→0)  −((1/q))^2 ((√(1+q^2 ))+1)=  −lim_(q→0)  (((√(1+q^2 ))+1)/q^2 ) = −∞ .★
limxx(x2+1x)=limxx(x1+1x2x)=limxx(x1+(1x)2x)=limxx2(1+(1x)2+1)set1x=q,q0limq0(1q)2(1+q2+1)=limq01+q2+1q2=.
Answered by mathmax by abdo last updated on 29/Jun/20
for x>0 we have x((√(x^2 +1))−x) =x(x(√(1+(1/x^2 )))−x)∼x(x(1+(1/(2x^2 )))−x)  =x( (1/(2x))) =(1/2) ⇒lim_(x→+∞)  x((√(1+x^2 ))−x) =(1/2)  for x<0  we have x((√(x^2 +1))−x) =x{ −x(√(1+(1/x^2 )))−x}  ∼x{−x(1+(1/(2x^2 )))−x} =x{−2x−(1/(2x))} =−2x^2 −(x/2) →−∞
forx>0wehavex(x2+1x)=x(x1+1x2x)x(x(1+12x2)x)=x(12x)=12limx+x(1+x2x)=12forx<0wehavex(x2+1x)=x{x1+1x2x}x{x(1+12x2)x}=x{2x12x}=2x2x2
Commented by ajfour last updated on 29/Jun/20
correct Sir,  i mean lim_(x→+∞) f(x)=(1/2)  and  lim_(x→−∞) f(x)=−∞ . Thanks.
correctSir,imeanlimx+f(x)=12andlimxf(x)=.Thanks.
Commented by mathmax by abdo last updated on 29/Jun/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *