Menu Close

find-ln-x-




Question Number 153105 by alisiao last updated on 04/Sep/21
find  ln 𝚪(x) ?
$${find}\:\:\boldsymbol{{ln}}\:\boldsymbol{\Gamma}\left(\boldsymbol{{x}}\right)\:? \\ $$
Answered by puissant last updated on 04/Sep/21
ln(Γ(x))=−γx−lnx+Σ_(k=1) ^∞ {(x/k)−ln(1+(x/k))}  =(x−(1/2))lnx−x+(1/2)ln(2π)+(1/2)Σ_(n=2) ^∞ (((n−1))/(n(n+1)))ζ(n,x+1)  =(x−(1/2))lnx−x+(1/2)ln(2π)+2∫_0 ^∞ ((arctan((x/a)))/(e^(2πx) −1))dx.
$${ln}\left(\Gamma\left({x}\right)\right)=−\gamma{x}−{lnx}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{{x}}{{k}}−{ln}\left(\mathrm{1}+\frac{{x}}{{k}}\right)\right\} \\ $$$$=\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right){lnx}−{x}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi\right)+\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left({n}−\mathrm{1}\right)}{{n}\left({n}+\mathrm{1}\right)}\zeta\left({n},{x}+\mathrm{1}\right) \\ $$$$=\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right){lnx}−{x}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi\right)+\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left(\frac{{x}}{{a}}\right)}{{e}^{\mathrm{2}\pi{x}} −\mathrm{1}}{dx}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *