Menu Close

find-ln-x-x-2-1-x-2-1-dx-2-calculate-2-5-ln-x-x-2-1-x-2-1-dx-




Question Number 39833 by math khazana by abdo last updated on 12/Jul/18
find  ∫    ((ln(x+(√(x^2  −1))))/( (√(x^2 −1)))) dx  2) calculate ∫_2 ^5    ((ln(x+(√(x^2  −1)))/( (√(x^2 −1))))dx
findln(x+x21)x21dx2)calculate25ln(x+x21x21dx
Commented by abdo mathsup 649 cc last updated on 12/Jul/18
let I = ∫  ((ln(x+(√(x^2  −1))))/( (√(x^2 −1))))dx  let integrate by parts  u^′  =(1/( (√(x^2 −1))))  and  v(x)= ln(x+(√(x^2  −1)))  I =ln^2 (x+(√(x^2 −1))) −∫  ((ln(x+(√(x^2  −1))))/( (√(x^2  −1))))dx  =ln^2 (x+(√(x^2 −1)))−I ⇒  2I =ln^2 (x+(√(x^2 −1))) ⇒ I =(1/2)ln^2 (x+(√(x^2  −1)))  2) ∫_2 ^5    ((ln(x+(√(x^2 −1))))/( (√(x^2 −1))))dx=[(1/2)ln^2 (x+(√(x^2 −1)))]_2 ^5   =(1/2){ln^2 (5 +(√(24)))−ln^2 (2+(√3))}
letI=ln(x+x21)x21dxletintegratebypartsu=1x21andv(x)=ln(x+x21)I=ln2(x+x21)ln(x+x21)x21dx=ln2(x+x21)I2I=ln2(x+x21)I=12ln2(x+x21)2)25ln(x+x21)x21dx=[12ln2(x+x21)]25=12{ln2(5+24)ln2(2+3)}
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jul/18
t=x+(√(x^2 −1))   (dt/dx)=1+((2x)/(2(√(x^2 −1))))=((x+(√(x^2 −1)))/( (√(x^2 −1))))  ∫lnt dt  tlnt−t+c  (x+(√(x^2 −1))) ln(x+(√(x^2 −1)) )−(x+(√(x^2 −1)) )+c
t=x+x21dtdx=1+2x2x21=x+x21x21lntdttlntt+c(x+x21)ln(x+x21)(x+x21)+c
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jul/18
t=x+(√(x^2 −1))   (dt/dx)=1+((2x)/(2(√(x^2 −1))))=((x+(√(x^2 −1)))/( (√(x^2 −1))))  ∫lnt dt  tlnt−t+c  (x+(√(x^2 −1))) ln(x+(√(x^2 −1)) )−(x+(√(x^2 −1)) )+c
t=x+x21dtdx=1+2x2x21=x+x21x21lntdttlntt+c(x+x21)ln(x+x21)(x+x21)+c

Leave a Reply

Your email address will not be published. Required fields are marked *