find-ln-x-x-2-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36430 by prof Abdo imad last updated on 02/Jun/18 find∫ln(x+x2)x2dx Commented by abdo mathsup last updated on 03/Jun/18 letintegratebypartsu′=1x2andv=ln(x+x2)I=−1xln(x+x2)+∫1x2x+1x+x2dx=−ln(x+x2)x+∫2x+1x2(x+1)dxbut∫2x+1x2(x+1)dx=∫2(x+1)−1x2(x+1)dx=2∫dxx2−∫dxx2(x+1)=−2x−∫dxx2(x+1)F(x)=1x2(x+1)=ax+bx2+cx+1b=limx→0x2F(x)=1c=limx→−1(x+1)F(x)=1⇒F(x)=1x+bx2+1x+1F(1)=12=1+b+12⇒b=−1⇒F(x)=1x−1x2+1x+1⇒∫F(x)dx=ln∣x∣+1x−ln∣x+1∣+c⇒I=−ln(x2+x)x−2x−ln∣x∣−1x+ln∣x+1∣+c⇒I=−ln(x2+x)x−3x−ln∣x∣+ln∣x+1∣+c. Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18 ln(x+x2)×−1x−∫1x+x2×(1+2x)×−1xdx−ln(x+x2)x+∫1+2xx2(1+x)dxI2=∫1+2xx2(1+x)dx=∫1+x+xx2(1+x)dx=∫dxx2+∫dxx(1+x)=∫x−2dx+∫1+x−xx(1+x)dx=−1x+∫dxx−∫dx1+x=−1x+ln(x1+x)=−ln(x+x2)x−1x+lnx1+x Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: tan-m-m-1-tan-1-2m-1-Next Next post: calculate-0-1-x-1-x-2-1-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.