Menu Close

find-ln-x-x-2-x-2-dx-




Question Number 36430 by prof Abdo imad last updated on 02/Jun/18
find  ∫   ((ln(x+x^2 ))/x^2 )dx
findln(x+x2)x2dx
Commented by abdo mathsup last updated on 03/Jun/18
let integrate by parts  u^′  =(1/x^2 ) and v=ln(x+x^2 )  I = −(1/x)ln(x+x^2 )  +∫   (1/x) ((2x+1)/(x+x^2 ))dx  =−((ln(x+x^2 ))/x)  + ∫   ((2x+1)/(x^2 (x+1)))dx but  ∫  ((2x+1)/(x^2 (x+1)))dx = ∫  ((2(x+1) −1)/(x^2 (x+1)))dx  = 2 ∫ (dx/x^2 )  −∫     (dx/(x^2 (x+1))) =((−2)/x) −∫    (dx/(x^2 (x+1)))  F(x)=  (1/(x^2 (x+1))) =(a/x) +(b/x^2 )  +(c/(x+1))  b=lim_(x→0) x^2 F(x) =1   c=lim_(x→−1) (x+1)F(x)= 1 ⇒  F(x) =  (1/x) +(b/x^2 )  +(1/(x+1))  F(1) = (1/2) = 1  +b + (1/2) ⇒b=−1 ⇒  F(x) = (1/x)  −(1/x^2 ) + (1/(x+1)) ⇒  ∫ F(x)dx = ln∣x∣  +(1/x) −ln∣x+1∣ +c ⇒  I =−((ln(x^2  +x))/x)  −(2/x) −ln∣x∣ −(1/x) +ln∣x+1∣ +c⇒  I = −((ln(x^2  +x))/x) −(3/x)  −ln∣x∣ +ln∣x+1∣ +c .
letintegratebypartsu=1x2andv=ln(x+x2)I=1xln(x+x2)+1x2x+1x+x2dx=ln(x+x2)x+2x+1x2(x+1)dxbut2x+1x2(x+1)dx=2(x+1)1x2(x+1)dx=2dxx2dxx2(x+1)=2xdxx2(x+1)F(x)=1x2(x+1)=ax+bx2+cx+1b=limx0x2F(x)=1c=limx1(x+1)F(x)=1F(x)=1x+bx2+1x+1F(1)=12=1+b+12b=1F(x)=1x1x2+1x+1F(x)dx=lnx+1xlnx+1+cI=ln(x2+x)x2xlnx1x+lnx+1+cI=ln(x2+x)x3xlnx+lnx+1+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
ln(x+x^2 )×((−1)/x)−∫(1/(x+x^2 ))×(1+2x)×((−1)/x)dx  ((−ln(x+x^2 ))/x)+∫((1+2x)/(x^2 (1+x)))dx  I_2 =∫((1+2x)/(x^2 (1+x)))dx  =∫((1+x+x)/(x^2 (1+x)))dx  =∫(dx/x^2 )+∫(dx/(x(1+x)))  =∫x^(−2) dx+∫((1+x−x)/(x(1+x)))dx  =((−1)/x)+∫(dx/x)−∫(dx/(1+x))  =((−1)/x)+ln((x/(1+x)))  =−((ln(x+x^2 ))/x)−(1/x)+ln(x/(1+x))
ln(x+x2)×1x1x+x2×(1+2x)×1xdxln(x+x2)x+1+2xx2(1+x)dxI2=1+2xx2(1+x)dx=1+x+xx2(1+x)dx=dxx2+dxx(1+x)=x2dx+1+xxx(1+x)dx=1x+dxxdx1+x=1x+ln(x1+x)=ln(x+x2)x1x+lnx1+x

Leave a Reply

Your email address will not be published. Required fields are marked *